Mathematical Modelling with Fully Anisotropic Diffusion

Thomas Hillen (with K.J. Painter and M. Winkler)

University of Alberta

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Fully Anisotropic Diffusion

$$u_t = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} (D^{ij}(x)u), \qquad D(x) \in \mathrm{I\!R}^{n \times n}.$$

◆□ → ◆□ → ◆ □ → ◆ □ →

Ξ 9 Q (P

Fully Anisotropic Diffusion

$$u_t = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} (D^{ij}(x)u), \qquad D(x) \in \mathbb{R}^{n \times n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Where does this model come from?

Fully Anisotropic Diffusion

$$u_t = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} (D^{ij}(x)u), \qquad D(x) \in \mathbb{R}^{n \times n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Where does this model come from?
- What are mathematical properties?

Fully Anisotropic Diffusion

$$u_t = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} (D^{ij}(x)u), \qquad D(x) \in \mathbb{R}^{n \times n}.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

- Where does this model come from?
- What are mathematical properties?
- What can it be used for?

Outline

▲ロト ▲圖ト ▲ヨト ▲ヨト 三連 - のへで

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

(1.1) Random walk

Master equation:

$$\frac{du_i}{dt} = T_{i-1}^+ u_{i-1} + T_{i+1}^- u_{i+1} - (T_i^+ + T_i^-) u_i.$$

イロト 不得 とうき とうとう

Sac

Three cases

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

1. look locally: $T_i^{\pm}(x) = (\Delta x)^{-2} T(x_i)$ $u_t \approx (Tu)_{xx}$

Three cases

1. look locally:
$$T_i^{\pm}(x) = (\Delta x)^{-2} T(x_i)$$

 $u_t \approx (Tu)_{xx}$

2. look ahead:
$$T_i^{\pm}(x)=(\Delta x)^{-2} \ T(x_{i\pm 1})$$

$$u_t\approx (Tu_x-T_xu)_x$$

Three cases

1. look locally:
$$T_i^{\pm}(x) = (\Delta x)^{-2} T(x_i)$$

 $u_t \approx (Tu)_{xx}$

2. look ahead:
$$T_i^{\pm}(x) = (\Delta x)^{-2} T(x_{i\pm 1})$$

 $u_t \approx (Tu_x - T_x u)_x$

3. look ahead half way
$$T_i^{\pm}(x) = (\Delta x)^{-2} T(x_{i\pm 1/2})$$

 $u_t \approx (Tu_x)_x$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Othmer, Stevens 1997, Okubo, Levin 2002

(1.2) Ideal free distribution

"Species distribute themselves such that the fitness of each individual is the same." (Fretwell, Lucas, 1970)

(日)

(1.2) Ideal free distribution

"Species distribute themselves such that the fitness of each individual is the same." (Fretwell, Lucas, 1970)

- Let $\mu(x)$, $x \in \mathbb{R}$ describe the resource landscape.
- The population u(x) has an ideal free distribution, if $u \sim \mu$.

(日)

(1.2) Ideal free distribution

"Species distribute themselves such that the fitness of each individual is the same." (Fretwell, Lucas, 1970)

- Let $\mu(x)$, $x \in {\rm I\!R}$ describe the resource landscape.
- The population u(x) has an ideal free distribution, if $u \sim \mu$.
- If individuals move faster in bad resources, such as

$$D(x) = \mu(x)^{-1}$$

then the ideal free distribution is realized by steady states of

$$u_t = (D(x)u)_{xx} + ru(\mu(x) - u).$$

C. Cosner, S. Cantrell, M Lewis et al.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Outline

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

(1.3) Cell movement in fiber networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H', JMB, 2006

Experiments of FriedI and Wolf (fibrosarcoma HT1080/MT1-MMP cells):

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Tumor spheroid

Movie: NCB31

A model for mesenchymal motion, (H', JMB 2006)

Fibre orientation: $\theta \in S^{n-1}$.

Directed fibres (micro tubules or actin filaments), $\theta \neq -\theta$.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

Fibre Directional Distribution

- Orientation $\theta \in S^{n-1}$.
- Distribution of fibres $q(t, x, \theta)$

$$\int_{S^{n-1}}q(t,x,\theta)d\theta=1.$$

Cell Velocities

Set of all possible cell velocities V:

$$egin{aligned} \mathcal{V} = [s_1,s_2] imes S^{n-1}, & 0 \leq s_1 \leq s_2 < \infty. \ & \hat{\mathcal{V}} := rac{\mathcal{V}}{\|\mathcal{V}\|} \end{aligned}$$

Distribution on V

q is a distribution on S^{n-1} . To make this into a distribution on V we consider

$$\frac{q(t,x,\hat{v})}{\omega}$$

where

$$\omega = \int_V q(t,x,\hat{v}) dv = \begin{cases} \frac{s_2^n - s_1^n}{2}, & s_1 < s_2, \\ s^{n-1}, & s_1 = s_2 = s. \end{cases}$$

Transport Equation

p(t, x, v): cell distribution at time t, location x, velocity v.

$$p_t(t,x,v) + v \cdot \nabla p(t,x,v) = -\mu p(t,x,v) + \mu \int_V \frac{q(t,x,\hat{v})}{\omega} p(t,x,v') dv'$$

 $\mu > 0$ constant turning rate. $\frac{q(t,x,\hat{v})}{\omega}$: probability distribution of new chosen directions.

Transport Equation

$$oldsymbol{p}_t + oldsymbol{v} \cdot
abla oldsymbol{p} = \mu \left(rac{oldsymbol{q}}{\omega} oldsymbol{ar{p}} - oldsymbol{p}
ight)$$

$$\bar{p}=\int_V p(t,x,v)dv.$$

◆□ → ◆□ → ◆ □ → ◆ □ →

∃ 990

Transport Equation

$$oldsymbol{p}_t + oldsymbol{v} \cdot
abla oldsymbol{p} = \mu \left(rac{q}{\omega} ar{oldsymbol{p}} - oldsymbol{p}
ight)$$

$$ar{p} = \int_V p(t,x,v) dv.$$

Plus an equation for the tissue changes

$$q_t(t,x,v) = G(v,q,p).$$

・ロト ・回 ト ・ヨト ・ヨト

æ

990

Drift Diffusion Limits

H', Painter, Kinetic Models for Movement in Oriented Habitats and Scaling Limits, to appear 2012

Hyperbolic Scaling for Directed Tissue

$$\tau = \varepsilon t, \qquad \xi = \varepsilon x,$$

$$\varepsilon p_{\tau} + \varepsilon v \cdot \nabla_{\xi} p = \mathcal{L} p$$

$$\mathcal{L}\boldsymbol{p} = \mu \left(\frac{\boldsymbol{q}}{\omega} \ \bar{\boldsymbol{p}} - \boldsymbol{p}
ight)$$

Hyperbolic Scaling for Directed Tissue

$$\tau = \varepsilon t, \qquad \xi = \varepsilon x,$$

$$\varepsilon p_{\tau} + \varepsilon v \cdot \nabla_{\xi} p = \mathcal{L} p$$

$$\mathcal{L}\boldsymbol{p} = \mu \left(\frac{\boldsymbol{q}}{\omega} \ \bar{\boldsymbol{p}} - \boldsymbol{p}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◆○へ⊙

Use method of Chapman Enskog expansion.

Hyperbolic Scaling

$$ar{p}_{ au} +
abla \cdot (oldsymbol{u_c}ar{p}) = 0.$$

 $u_c(t,x) = \int_V v rac{q(t,x,\hat{v})}{\omega} dv = eta < q >$

Hyperbolic Scaling

$$ar{p}_{ au} +
abla \cdot (oldsymbol{u}_c ar{p}) = 0.$$

 $u_c(t,x) = \int_V v rac{q(t,x,\hat{v})}{\omega} dv = eta < q >$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The drift velocity u_c is the mean value of q/ω over V.

Hyperbolic Scaling

$$\bar{p}_{\tau} + \nabla \cdot (\underline{u}_{c}\bar{p}) = 0.$$

$$u_{c}(t,x) = \int_{V} v \frac{q(t,x,\hat{v})}{\omega} dv = \beta < q >$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

The drift velocity u_c is the mean value of q/ω over V. Note that $u_c = 0$ for undirected tissue.

Parabolic Scaling

$$au = \varepsilon^2 t, \qquad \xi = \varepsilon x,$$

$$\varepsilon^2 p_{\tau} + \varepsilon v \cdot \nabla_{\xi} p = \mathcal{L} p$$

Parabolic Scaling

$$\tau = \varepsilon^2 t, \qquad \xi = \varepsilon x,$$

$$\varepsilon^2 p_{ au} + \varepsilon v \cdot
abla_{\xi} p = \mathcal{L} p$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Use method of regular expansion in ε .

Parabolic scaling (diffusion dominated)

$$\bar{p}_{\tau} = \nabla(\nabla(D\bar{p}))$$
$$D(t,x) = \frac{1}{\mu} \int_{V} v v^{T} \frac{q(t,x,\hat{v})}{\omega} dv$$

Parabolic scaling (diffusion dominated)

$$\overline{p}_{\tau} = \nabla(\nabla(D\overline{p}))$$
$$D(t,x) = \frac{1}{\mu} \int_{V} v v^{T} \frac{q(t,x,\hat{v})}{\omega} dv$$

・ロト ・ 「 ・ ・ モ ト ・ モ ・ うらぐ

D is the variance-covariance matrix of $q(t, x, \theta)$.

Moment closure (mixed case)

Moment closure with fast momentum relaxation:

$$ar{p}_t +
abla \cdot (u_c ar{p}) =
abla (
abla D ar{p})$$

Moment closure (mixed case)

Moment closure with fast momentum relaxation:

$$\bar{p}_t + \nabla \cdot (u_c \bar{p}) = \nabla (\nabla D \bar{p})$$

Procedure:

- 1. Define $q(t, x, \theta)$ based on biological insight
- 2. Compute mean and variance of q/ω :

$$u_c = \int v q/\omega dv$$

$$D = \int (v - u_c)(v - u_c)^T q/\omega dv$$

(日)

3. Use drift-diffusion model
Example: aligned and undirected tissue

Assume

$$q(t,x, heta) := \left\{egin{array}{ll} 0.5 & ext{ for } heta = e_1, \ 0.5 & ext{ for } heta = -e_1, \ 0 & ext{ otherwise.} \end{array}
ight.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

and assume that $V = sS^{n-1}$.

Example: aligned and undirected tissue

Assume

$$q(t, x, heta) := \left\{ egin{array}{ll} 0.5 & ext{ for } heta = e_1, \ 0.5 & ext{ for } heta = -e_1, \ 0 & ext{ otherwise.} \end{array}
ight.$$

and assume that $V = sS^{n-1}$.

Then the drift diffusion limit is

$$ar{p}_t = rac{s^2}{\mu}ar{p}_{x_1x_1}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Outline

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

Brain tumors

[Swanson 2000]

$$egin{array}{rcl} u_t &=&
abla(D(x)
abla u) +
ho u \ & D(x) &=& egin{cases} 5 & x \in \{ ext{white matter}\}\ 1 & x \in \{ ext{gray matter}\} \end{cases}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Brain tumors

[Swanson 2000]

$$u_t = \nabla(D(x)\nabla u) + \rho u$$

$$D(x) = \begin{cases} 5 & x \in \{\text{white matter}\}\\ 1 & x \in \{\text{gray matter}\} \end{cases}$$

However

$$D(x) = \frac{1}{\omega} \int_V v v^T q(x, \hat{v}) \, dv$$

is the variance-covariance matrix. Swansons assumption does not reflect the fibrous structure of white matter.

(日)

White Matter

If at a point $x \in$ white matter we find a dominant direction of e_1 , say, then we would expect

$$D(x) = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

(1) Model derivations (2) Mesenchymal motion (3) Brain Tumors (4) Wolf Movement (5) A Blow-up result (6) Conclusions

DTI - diffusion tensor imaging

[Jägersand, Murtha, Beaulieu, 2000s]

DTI with tensors represented as ellipsoids

Diffusion Ellipsoid Surface is an isosurface of the probability of diffusion

(日) (個) (E) (E) (E)

590

Tumor diffusion tensor

• Water diffusion tensor $D_w \in {\rm I\!R}^{3 \times 3}$:

$$D_{w} = \lambda_1 v_1 v_1^{T} + \lambda_2 v_2 v_2^{T} + \lambda_3 v_3 v_3^{T}$$

・ロト ・ 「 ・ ・ モ ト ・ モ ・ うらぐ

 (λ_j, v_j) are the eigenvalues and eigenvectors of the water diffusion coefficient.

Tumor diffusion tensor

• Water diffusion tensor $D_w \in \mathrm{I\!R}^{3 \times 3}$:

$$D_{w} = \lambda_1 v_1 v_1^{T} + \lambda_2 v_2 v_2^{T} + \lambda_3 v_3 v_3^{T}$$

 (λ_j, v_j) are the eigenvalues and eigenvectors of the water diffusion coefficient.

• [*Jbabdi, Swanson et al. 2005*]: Tumor diffusion tensor

$$D_{T} = a_{1}(r)\lambda_{1}v_{1}v_{1}^{T} + a_{2}(r)\lambda_{2}v_{2}v_{2}^{T} + a_{3}(r)\lambda_{3}v_{3}v_{3}^{T},$$

(日)

where r is a scaling parameter.

(1) Model derivations (2) Mesenchymal motion (3) Brain Tumors (4) Wolf Movement (5) A Blow-up result (6) Conclusions

Jbabdi et al. 2005, Figure 1

FIG. 1. FIGB color maps of the tensor's principal diffusion directions. Left tensor with no change in tumor cell diffusion anisotropy compared to water anisotropy (r = 1). Right Tensor with change in tumor cell anisotropy (r = 10).

- -

590

Jbabdi et al. 2005, Figure 3

FIG. 3. Simulations with a starting point located in the insular part of the uncluste fascioulus. (a) Patient data. (b) Anisotropic simulations (r = 10), (c) isotropic simulations. Visualization threshold : 500 cells per mm².

(日) (四) (日) (日) (日) (日)

590

Research stimulated by Swanson, Jbabdi et al.

Question: How to relate DTI information to tissue structure and to tumor diffusion?

(日)

Research stimulated by Swanson, Jbabdi et al.

Question: How to relate DTI information to tissue structure and to tumor diffusion?

Possible answer:

Using transport equation framework and the von-Mises distribution.

(日)

Let $\gamma \in S^{n-1}$ be a given direction. Define the von Mises distribution

$$q(x, heta) = rac{1}{2\pi I_0(k)} e^{k(x) heta\cdot\gamma},$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

where k(x) is the parameter of concentration.

Let $\gamma \in S^{n-1}$ be a given direction. Define the von Mises distribution

$$q(x, heta) = rac{1}{2\pi I_0(k)} e^{k(x) heta\cdot\gamma},$$

where k(x) is the parameter of concentration.

- q becomes uniform for $k \to 0$.
- q becomes a singular delta-distribution in direction γ for $k \to \infty$.

(日)

Let $\gamma \in S^{n-1}$ be a given direction. Define the von Mises distribution

$$q(x, heta) = rac{1}{2\pi I_0(k)} e^{k(x) heta\cdot\gamma},$$

where k(x) is the parameter of concentration.

- q becomes uniform for $k \rightarrow 0$.
- q becomes a singular delta-distribution in direction γ for $k \to \infty$.

Recall

$$u_c = \int v \frac{q}{\omega} dv, \quad D = \int (v - u_c) (v - u_c)^T \frac{q}{\omega} dv.$$

(日)

Let $\gamma \in S^{n-1}$ be a given direction. Define the von Mises distribution

$$q(x, heta) = rac{1}{2\pi I_0(k)} e^{k(x) heta\cdot\gamma},$$

where k(x) is the parameter of concentration.

- q becomes uniform for $k \rightarrow 0$.
- q becomes a singular delta-distribution in direction γ for $k \to \infty$.

Recall

$$u_c = \int v \frac{q}{\omega} dv, \quad D = \int (v - u_c) (v - u_c)^T \frac{q}{\omega} dv.$$

For the advection-diffusion limit in 2D with $V = sS^1$:

$$u_{c} = s \frac{l_{1}(k)}{l_{0}(k)} \gamma$$

$$\frac{2\mu}{s^{2}} D = \left(1 - \frac{l_{2}(k)}{l_{0}(k)}\right) \mathcal{I} + \left(\frac{l_{2}(k)}{l_{0}(k)} - \left(\frac{l_{1}(k)}{l_{0}(k)}\right)^{2}\right) \gamma \gamma^{T}$$

Example 2: Oriented

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solution of

$$u_t = \nabla \nabla (D(x)u)$$

(A) $s = 10, \mu = 100$, (B) parabolic limit.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三連 - のへで

Bimodal von-Mises distribution

Let $\gamma \in S^1$ be a given direction. Define the bimodal von Mises distribution

$$q(x,\theta) = \frac{1}{4\pi I_0(k)} \left(e^{k(x)\theta \cdot \gamma} + e^{-k(x)\theta \cdot \gamma} \right),$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

where k(x) is the parameter of concentration.

Bimodal von-Mises distribution

Let $\gamma \in S^1$ be a given direction. Define the bimodal von Mises distribution

$$q(x, heta) = rac{1}{4\pi I_0(k)} \left(e^{k(x) heta\cdot\gamma} + e^{-k(x) heta\cdot\gamma}
ight),$$

where k(x) is the parameter of concentration. For the advection-diffusion limit:

$$u_c = 0$$

$$\frac{2\mu}{s^2}D = \left(1 - \frac{I_2(k)}{I_0(k)}\right)\mathcal{I} + \frac{I_2(k)}{I_0(k)}\gamma\gamma^T$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ の < ⊙

Example 2: Nonoriented

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

(A) $s = 0.1, \mu = 0.01$, (B) $s = 1, \mu = 1$, (C) $s = 10, \mu = 100$ (D) parabolic limit.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ クタ()>

Application to DTI data

- Water diffusion tensor D_{TI} with eigenvectors and eigenvalues (λ_i, e_i) .
- dominating direction γ := e₁
- Fractional anisotropy

$$\mathsf{FA}(D_{\mathcal{T}I}) := \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

concentration coefficient

$$k := \kappa FA(D_{TI}), \qquad \kappa > 0.$$

(日)、(型)、(E)、(E)、(E)、(C)、(C)

Fractional Anisotropy

$$\mathsf{FA}(D_{\mathcal{T}I}) := \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

Fractional Anisotropy

$$\mathsf{FA}(D_{\mathcal{T}I}) := \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

(日)、(型)、(E)、(E)、(E)、(C)、(C)

•
$$D_1 = diag(1, 1, 1)$$
, then $FA(D_1) = 0$.

- $D_2 = \text{diag}(1, 1, 0)$, then $FA(D_2) = 1/\sqrt{2}$.
- $D_3 = diag(1, 0, 0)$, then $FA(D_3) = 1$

Fractional Anisotropy

$$\mathsf{FA}(D_{\mathcal{T}I}) := \frac{\sqrt{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}}{\sqrt{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

- $D_1 = diag(1, 1, 1)$, then $FA(D_1) = 0$.
- $D_2 = \text{diag}(1, 1, 0)$, then $FA(D_2) = 1/\sqrt{2}$.
- $D_3 = diag(1, 0, 0)$, then $FA(D_3) = 1$
- FA(D) ∈ [0, 1]

1. Obtain measured DTI data

- 1. Obtain measured DTI data
- Define q(x) as von-Mises distribution with dominating direction γ = e₁ and concentration parameter k = κFA. Use κ > 0 as adjustable parameter.

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

- 1. Obtain measured DTI data
- Define q(x) as von-Mises distribution with dominating direction γ = e₁ and concentration parameter k = κFA. Use κ > 0 as adjustable parameter.
- Compute tumor diffusion tensor as second moment of q(x):

$$D(x) = \int v v^T q(x) / \omega dv.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

- 1. Obtain measured DTI data
- Define q(x) as von-Mises distribution with dominating direction γ = e₁ and concentration parameter k = κFA. Use κ > 0 as adjustable parameter.
- Compute tumor diffusion tensor as second moment of q(x):

$$D(x) = \int v v^T q(x) / \omega dv.$$

4. Solve fully anisotropic diffusion equation on brain domain $u_t = \nabla \nabla (D(x)u).$

(日)、(型)、(E)、(E)、(E)、(C)、(C)

Artificial brain

Using Anisotropic Diffusion for Brain Tumors

K.J. Painter:

Outline

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

Wolf Movement on Seismic lines

(日) (四) (E) (E) (E) (E)

990

McKenzie, Lewis et al. 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Outline

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

Example of a road or white matter track

=

Example of a road or white matter track

D is diagonal and

$$u_t = (d_1(x, y)u)_{xx} + (d_2(x, y)u)_{yy}$$

⇒ ⊳

Sac

- regular diffusion: $d_1 = d_2 = \text{const.}$
- diffusion biased in x direction: $d_1 >> d_2$.

A Mathematical problem

On $\Omega = (0, L_x) \times (0, L_y)$ consider

$$u_t = (d_1(x, y)u)_{xx} + (d_2(x, y)u)_{yy}$$

under no-flux boundary conditions and

$$d_1 = d_2 = 1/2,$$
 for $y \notin (a, b),$
 $d_1 = 1, d_2 = \varepsilon$ for $y \in (a, b).$

A Mathematical problem

On $\Omega = (0, L_x) \times (0, L_y)$ consider

$$u_t = (d_1(x, y)u)_{xx} + (d_2(x, y)u)_{yy}$$

under no-flux boundary conditions and

$$d_1 = d_2 = 1/2,$$
 for $y \notin (a, b),$
 $d_1 = 1, d_2 = \varepsilon$ for $y \in (a, b).$

・ロト ・ 「 ・ ・ モ ト ・ モ ・ うらぐ

Goal: Understand behavior as $\varepsilon \rightarrow 0$.

Blow-up result

Theorem (H', Painter, Winkler, 2012) Assume $\varepsilon = 0$. Let

$$U(y,t)=\int u(x,y,t)dx.$$

Then in the sense of regular Borel measures over $[0, L_y]$ we have

$$U(y,t) \rightharpoonup^* \frac{1}{L_x} \chi_{(a,b)}(y) U_0(y) + m_1 \delta(y-a) + m_2 \delta(y-b),$$

as $t \to \infty$, where

$$m_1 = \int_{\{y < a\}} u_0 dx dy, \qquad m_2 = \int_{\{y > b\}} u_0 dx dy.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへで

Simulations

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ クタ()>

Simulations

(K.J. Painter)

590

æ

< • • • **•**

Outline

(1) Model derivations

(2) Mesenchymal motion

(3) Brain Tumors

(4) Wolf Movement

(5) A Blow-up result

(6) Conclusions

Conclusions

Fully anisotropic diffusion:

• Where does it come from? random walk, ideal free distribution, transport equations

▲ロト ▲圖ト ▲ヨト ▲ヨト 三連 - のへで

Conclusions

Fully anisotropic diffusion:

• Where does it come from? random walk, ideal free distribution, transport equations

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

• What are mathematical properties? pattern formation and blow-up

Conclusions

Fully anisotropic diffusion:

• Where does it come from? random walk, ideal free distribution, transport equations

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

- What are mathematical properties? pattern formation and blow-up
- What can it be used for? glioma growth and wolf movement

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Glioma:

• Fully develop 3D model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Glioma:

- Fully develop 3D model
- Calibrate the model on real patient DTI data

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

Glioma:

- Fully develop 3D model
- Calibrate the model on real patient DTI data
- How to include mass effect into the modelling (e.g. Konukoglu et al)?

Glioma:

- Fully develop 3D model
- Calibrate the model on real patient DTI data
- How to include mass effect into the modelling (e.g. Konukoglu et al)?

Wolf:

- Include predator-prey interactions.
- What are strategies to minimize impact of seismic lines?

▲ロト ▲冊ト ▲ヨト ▲ヨト 三三 - のくぐ

Glioma:

- Fully develop 3D model
- Calibrate the model on real patient DTI data
- How to include mass effect into the modelling (e.g. Konukoglu et al)?

Wolf:

- Include predator-prey interactions.
- What are strategies to minimize impact of seismic lines?

(日)、(型)、(E)、(E)、(E)、(C)、(C)

Math:

- Pattern formation and travelling waves
- Uniqueness of very weak solutions
- Other blow-up?

References

- H', J. Math. Bio., 2006 model development, drift-diffusion limits
- Painter, J. Math. Bio., 2009 extension to fibre production, simulations
- Chauviere, H', Preziosi, NHM 2007 and DCDS-B 2007 inclusion of cell-cell, cell-ECM interactions and chemotaxis
- H', Hinow, Wang, 2009, DCDS-B existence of mild solutions and weak steady states
- H', Painter, book chapter, 2012 anisotropic diffusion models, wolf movement
- H', Painter, Winkler, 2013, European J. Appl. Math. Blow-up result

(日)、(型)、(E)、(E)、(E)、(C)、(C)

• Painter, H' submitted 2012 application to glioma