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Fully Anisotropic Diffusion

ut =
∂

∂xi

∂

∂xj
(D ij(x)u), D(x) ∈ IRn×n.

• Where does this model come from?

• What are mathematical properties?

• What can it be used for?
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(1.1) Random walk

i

xx xii!1 i+1

T T +
_
i

ui (t) : Probability to find a particle at xi at time t.
T±i : Transitional probabilities

Master equation:

dui
dt

= T+
i−1ui−1 + T−i+1ui+1 − (T+

i + T−i ) ui .



(1) Model derivations (2) Mesenchymal motion (3) Brain Tumors (4) Wolf Movement (5) A Blow-up result (6) Conclusions

Three cases

1. look locally: T±i (x) = (∆x)−2 T (xi )

ut ≈ (Tu)xx

2. look ahead: T±i (x) = (∆x)−2 T (xi±1)

ut ≈ (Tux − Txu)x

3. look ahead half way T±i (x) = (∆x)−2 T (xi±1/2)

ut ≈ (Tux)x

Othmer, Stevens 1997, Okubo, Levin 2002
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(1.2) Ideal free distribution

“Species distribute themselves such that the fitness of each
individual is the same.”
(Fretwell, Lucas, 1970)

• Let µ(x), x ∈ IR describe the resource landscape.

• The population u(x) has an ideal free distribution, if u ∼ µ.

• If individuals move faster in bad resources, such as

D(x) = µ(x)−1

then the ideal free distribution is realized by steady states of

ut = (D(x)u)xx + ru(µ(x)− u).

C. Cosner, S. Cantrell, M Lewis et al.
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(1.3) Cell movement in fiber networks

fibres

movement direction

degraded fibres

directional change

H’, JMB, 2006
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Experiments of Friedl and Wolf
(fibrosarcoma HT1080/MT1-MMP cells):

Movie: JCB21
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Tumor spheroid

Movie: NCB31
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A model for mesenchymal motion, (H’, JMB 2006)

Fibre orientation: θ ∈ Sn−1.

Undirected fibres (collagen), θ ≈ −θ.

Directed fibres (micro tubules or actin filaments), θ 6= −θ.
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Fibre Directional Distribution

• Orientation θ ∈ Sn−1.

• Distribution of fibres q(t, x , θ)∫
Sn−1

q(t, x , θ)dθ = 1.
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Cell Velocities

Set of all possible cell velocities V:

V = [s1, s2]× Sn−1, 0 ≤ s1 ≤ s2 <∞.

v̂ :=
v

‖v‖
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Distribution on V

q is a distribution on Sn−1.
To make this into a distribution on V we consider

q(t, x , v̂)

ω

where

ω =

∫
V
q(t, x , v̂)dv =

{ sn2−sn1
n , s1 < s2,

sn−1 s1 = s2 = s.
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Transport Equation

p(t, x , v): cell distribution at time t, location x , velocity v .

pt(t, x , v) + v · ∇p(t, x , v) = −µp(t, x , v)

+µ

∫
V

q(t, x , v̂)

ω
p(t, x , v ′)dv ′

µ > 0 constant turning rate.
q(t,x ,v̂)

ω : probability distribution of new chosen directions.
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Transport Equation

pt + v · ∇p = µ
( q
ω
p̄ − p

)

p̄ =

∫
V
p(t, x , v)dv .

Plus an equation for the tissue changes

qt(t, x , v) = G (v , q, p).
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Drift Diffusion Limits

kinetic model

drift−diffusion equation

mass, momentum and energy

hyperbolic limit

balance equations for

moment closure

diffusion equation

parabolic limit

scaling
hyperbolic

fast momentum
relaxation

diffusion

transport equation

dominated

scaling
parabolic

H’, Painter, Kinetic Models for Movement in Oriented Habitats
and Scaling Limits, to appear 2012
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Hyperbolic Scaling for Directed Tissue

τ = εt, ξ = εx ,

εpτ + εv · ∇ξp = Lp

Lp = µ
( q
ω

p̄ − p
)

Use method of Chapman Enskog expansion.
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Hyperbolic Scaling

p̄τ +∇ · (uc p̄) = 0.

uc(t, x) =

∫
V
v
q(t, x , v̂)

ω
dv = β < q >

The drift velocity uc is the mean value of q/ω over V .
Note that uc = 0 for undirected tissue.
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Parabolic Scaling

τ = ε2t, ξ = εx ,

ε2pτ + εv · ∇ξp = Lp

Use method of regular expansion in ε.
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Parabolic scaling (diffusion dominated)

p̄τ = ∇(∇(Dp̄))

D(t, x) =
1

µ

∫
V
v vT

q(t, x , v̂)

ω
dv

D is the variance-covariance matrix of q(t, x , θ).
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Moment closure (mixed case)

Moment closure with fast momentum relaxation:

p̄t +∇ · (uc p̄) = ∇(∇Dp̄)

Procedure:

1. Define q(t, x , θ) based on biological insight

2. Compute mean and variance of q/ω:

uc =

∫
v q/ω dv

D =

∫
(v − uc)(v − uc)T q/ω dv

3. Use drift-diffusion model
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Example: aligned and undirected tissue

Assume

q(t, x , θ) :=


0.5 for θ = e1,
0.5 for θ = −e1,
0 otherwise.

and assume that V = sSn−1.

Then the drift diffusion limit is

p̄t =
s2

µ
p̄x1x1
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Brain tumors

[Swanson 2000]

ut = ∇(D(x)∇u) + ρu

D(x) =

{
5 x ∈ {white matter}
1 x ∈ {gray matter}

However

D(x) =
1

ω

∫
V
vvTq(x , v̂) dv

is the variance-covariance matrix. Swansons assumption does not
reflect the fibrous structure of white matter.
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White Matter

If at a point x ∈ white matter we find a dominant direction of e1,
say, then we would expect

D(x) =

5 0 0
0 1 0
0 0 1


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DTI - diffusion tensor imaging

[Jägersand, Murtha, Beaulieu, 2000s]

Jagersand-Murtha / Patient-specific mathematical modeling of brain tumor growth beyond the visible margin 

 

 
Figure 5: DIFFUSION TENSORS. An example of a DTI image, where tensors are represented by 
ellipsoids. Each ellipsoid is characterized by the 3 eigenvectors that characterize diffusion along (v ) and 
across (v ,v ). The eigenvalues , ,  are the diffusion rates in the corresponding directions. 
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Figure 6: TRACTOGRAPHY OF WHITE MATTER PATHWAYS. Diffusion tensor tractography 
demonstrates (a) the corpus callosum and internal capsule, (b) corticospinal tracts, and (c) optic 
radiations in a healthy control subject. 
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Tumor diffusion tensor

• Water diffusion tensor Dw ∈ IR3×3:

Dw = λ1v1v
T
1 + λ2v2v

T
2 + λ3v3v

T
3

(λj , vj) are the eigenvalues and eigenvectors of the water
diffusion coefficient.

• [Jbabdi, Swanson et al. 2005]:
Tumor diffusion tensor

DT = a1(r)λ1v1v
T
1 + a2(r)λ2v2v

T
2 + a3(r)λ3v3v

T
3 ,

where r is a scaling parameter.
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Jbabdi et al. 2005, Figure 1
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Jbabdi et al. 2005, Figure 3
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Research stimulated by Swanson, Jbabdi et al.

Question:
How to relate DTI information to tissue structure and to tumor
diffusion?

Possible answer:
Using transport equation framework and the von-Mises
distribution.

DTI DTI DCq(      )

(a) (b) (c) (d) (f)

Model

(e)
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von Mises distribution
Let γ ∈ Sn−1 be a given direction. Define the von Mises
distribution

q(x , θ) =
1

2πI0(k)
ek(x)θ·γ ,

where k(x) is the parameter of concentration.

• q becomes uniform for k → 0.
• q becomes a singular delta-distribution in direction γ for
k →∞.

Recall

uc =

∫
v
q

ω
dv , D =

∫
(v − uc)(v − uc)T

q

ω
dv .

For the advection-diffusion limit in 2D with V = sS1:

uc = s
I1(k)

I0(k)
γ

2µ

s2
D =

(
1− I2(k)

I0(k)

)
I +

(
I2(k)

I0(k)
−
(
I1(k)

I0(k)

)2
)
γγT
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Example 2: Oriented
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Solution of
ut = ∇∇(D(x)u)

(A) s = 10, µ = 100, (B) parabolic limit.
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Bimodal von-Mises distribution

Let γ ∈ S1 be a given direction. Define the bimodal von Mises
distribution

q(x , θ) =
1

4πI0(k)

(
ek(x)θ·γ + e−k(x)θ·γ

)
,

where k(x) is the parameter of concentration.

For the advection-diffusion limit:

uc = 0

2µ

s2
D =

(
1− I2(k)

I0(k)

)
I +

I2(k)

I0(k)
γγT
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Example 2: Nonoriented
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(A) s = 0.1, µ = 0.01, (B) s = 1, µ = 1, (C) s = 10, µ = 100
(D) parabolic limit.



(1) Model derivations (2) Mesenchymal motion (3) Brain Tumors (4) Wolf Movement (5) A Blow-up result (6) Conclusions

Application to DTI data

• Water diffusion tensor DTI with eigenvectors and eigenvalues
(λi , ei ).

• dominating direction γ := e1

• Fractional anisotropy

FA(DTI ) :=

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

2(λ21 + λ22 + λ23)

• concentration coefficient

k := κFA(DTI ), κ > 0.
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Fractional Anisotropy

FA(DTI ) :=

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2√

2(λ21 + λ22 + λ23)

• D1 = diag(1, 1, 1), then FA(D1) = 0.

• D2 = diag(1, 1, 0), then FA(D2) = 1/
√

2.

• D3 = diag(1, 0, 0), then FA(D3) = 1

• FA(D) ∈ [0, 1]
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Procedure

1. Obtain measured DTI data

2. Define q(x) as von-Mises distribution with dominating
direction γ = e1 and concentration parameter k = κFA.
Use κ > 0 as adjustable parameter.

3. Compute tumor diffusion tensor as second moment of
q(x):

D(x) =

∫
vvTq(x)/ωdv .

4. Solve fully anisotropic diffusion equation on brain domain

ut = ∇∇(D(x)u).
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Artificial brain

(d) Glioma growth for varying kappa

κ = 0 κ = 10 κ = 100

Initial population
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Using Anisotropic Diffusion for Brain Tumors

K.J. Painter:

growth.avi
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Wolf Movement on Seismic lines

McKenzie, Lewis et al. 2011
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initial condition after time t = 10
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initial conditions after time t = 5
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Example of a road or white matter track

L
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d
1

= d
2
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d1 d=
2

= 0.5

d
2

= 0d
1

=

D is diagonal and

ut = (d1(x , y)u)xx + (d2(x , y)u)yy

• regular diffusion: d1 = d2 =const.

• diffusion biased in x direction: d1 >> d2.
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A Mathematical problem

On Ω = (0, Lx)× (0, Ly ) consider

ut = (d1(x , y)u)xx + (d2(x , y)u)yy

under no-flux boundary conditions and

d1 = d2 = 1/2, for y 6∈ (a, b),

d1 = 1, d2 = ε for y ∈ (a, b).

Goal: Understand behavior as ε→ 0.
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Blow-up result

Theorem (H’, Painter, Winkler, 2012)
Assume ε = 0. Let

U(y , t) =

∫
u(x , y , t)dx .

Then in the sense of regular Borel measures over [0, Ly ] we have

U(y , t) ⇀∗
1

Lx
χ(a,b)(y)U0(y) + m1δ(y − a) + m2δ(y − b),

as t →∞, where

m1 =

∫
{y<a}

u0dxdy , m2 =

∫
{y>b}

u0dxdy .
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Simulations

(K.J. Painter)



(1) Model derivations (2) Mesenchymal motion (3) Brain Tumors (4) Wolf Movement (5) A Blow-up result (6) Conclusions

Simulations
(K.J. Painter)

(a) epsilon = 0.1

(b) epsilon = 0.001
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Conclusions

Fully anisotropic diffusion:

• Where does it come from?
random walk, ideal free distribution, transport equations

• What are mathematical properties?
pattern formation and blow-up

• What can it be used for?
glioma growth and wolf movement
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Open Problems

Glioma:

• Fully develop 3D model

• Calibrate the model on real patient DTI data

• How to include mass effect into the modelling
(e.g. Konukoglu et al)?

Wolf:

• Include predator-prey interactions.

• What are strategies to minimize impact of seismic lines?

Math:

• Pattern formation and travelling waves

• Uniqueness of very weak solutions

• Other blow-up?
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