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Introduction

• Biological evolution is driven by selection and mutation.

• Ecological feedback loops (environmental conditions co-evolve)
induces a wide spectrum of possible dynamics.

Basic Questions in the Evolution of Dispersal:

• How do species adopt their dispersal strategies?

• How will their dispersal behaviors evolve?

• Is there an "optimal" dispersal strategy associated with a
given habitat condition?
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Unconditional and Conditional Dispersal

Unconditional Dispersal: Movement of organism that is
independent of local environmental conditions.

• Di�usion

• Uniform stream �ow

Conditional Dispersal: Movement that depends on local
environmental conditions

• Movement biased toward favorable environments

• Cross-di�usion

• Fitness-dependent dispersal
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Unconditional Dispersal

The following situation is considered in [Hastings (1983)]. Suppose
u is the density of resident species obeying

ut = µ∆u + uF (x , u) and
∂u

∂n

∣∣∣∣
∂Ω

= 0

where F is decreasing in u. At equilibrium, u de�nes the
environment. Introducing a rare mutant v ,

vt = ν∆v + vF (x , u + v) and
∂v

∂n

∣∣∣∣
∂Ω

= 0.

Theorem (Hastings (1983))

The mutant v can invade when rare if and only if ν < µ.
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Evolutionarily Stable (Unbeatable) Strategies

A strategy µ̂ is Evolutionarily Stable if, once the population
adopting µ̂ is established, they cannot be invaded successfully by
any small amount of mutant with slightly di�erent strategies.
[Maynard Smith and Price (1973)]

• In other words, Hastings has shown that there does not exist
any ESS for the unconditional di�usion model.
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Unconditional Dispersal

• What happens after the rare mutant v invades successfully?

The following more explicit model is considered by [Dockery et. al.
(1998)].

ut = µ∆u + u(m − u − v) in Ω× (0,∞),
vt = ν∆v + v(m − u − v) in Ω× (0,∞),
∂u
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞),
u(x , 0) = u0(x), v(x , 0) = v0(x) in Ω.

The slower di�using mutant v actually displaces the resident u.

Theorem (Dockery et. al. (1998))

If ν < µ, then for any non-trivial initial condition, v always drives u

to extinction.
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Slower Di�user Prevails

• Slower di�usion rate is "selected" by the environment.
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A Conditional Dispersal Model

The following model is considered in [Cantrell, Cosner, Lou
(06',07')][Chen-Lou(08')][Chen-Hambrock-Lou(08')][Hambrock-
Lou(09')]

ut = µ∇ · (∇u − ηu∇m) + u(m − u − v) in Ω× (0,∞),
vt = µ∇ · (∇v − ξv∇m) + v(m − u − v) in Ω× (0,∞),
∂u
∂n − ηu

∂m
∂n = ∂v

∂n − ξu
∂m
∂n = 0 on ∂Ω× (0,∞),

u(x , 0) = u0(x), v(x , 0) = v0(x) in Ω.

• u, v are two phenotypes that disperse with a combination of
di�usion and directed movement.

• η, ξ denote rates of directed movement (1-d trait).

• u, v con�ned to the habitat Ω.

• What if the strategies of u and v are very similar? i.e. η ∼ ξ.
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Conditional Dispersal

Theorem (Hambrock-Lou(09'))

Let Ω = (0, 1) and m,mx > 0 in [0, 1].

(i) If 0 ≤ η ≤ 1
maxΩ̄ m

, the for ξ ↘ η, (0, ṽ) is globally

asymptotically stable.

(ii) If η ≥ 1
minΩ̄ m

, then for ξ ↗ η, (0, ṽ) is globally asymptotically

stable.

• (0, ṽ) is the equilibrium state when u is extinct.
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Conditional Dispersal

• "Selection Gradient" reverses.

• Intermediate advection rate is favored.

• No ESS outside of [ 1
maxΩ̄ m

, 1
minΩ̄ m

].
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The Invasion Exponent λ = λ(η, ξ)

Let (ũ, 0) be a semi-trivial steady state, where ũ = ũ(η) is the
unique positive solution of

µ∇ · (∇ũ − ηũ∇m) + ũ(m − ũ) = 0 and no-�ux b.c.

Let λ = λ(η, ξ) be the principal eigenvalue that determines the
local stability of (ũ, 0), which satis�es

µ∇ · (∇ϕ− ξϕ∇m) + (m − ũ)ϕ+ λϕ = 0 and no-�ux b.c.

• i.e. λ is the Invasion Exponent: λ < 0⇒ v can invade while
λ > 0⇒ v fails to invade and goes extinct.

• Note: ξ = η ⇒ λ = 0 with ϕ = ũ.

• ∂
∂ξλ = λξ is the Selection Gradient.
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Conditional Dispersal

• "Selection Gradient" reverses.

• Intermediate advection rate is favored.

• Is there an ESS in the interval [ 1
maxΩ̄ m

, 1
minΩ̄ m

]?
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Conditional Dispersal

• "Selection Gradient" reverses.

• Intermediate advection rate is favored.

• Is there an ESS strategy in the interval [ 1
maxΩ̄ m

, 1
minΩ̄ m

]?
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Evolutionarily Stable (Unbeatable) Strategies

De�nition

We call η̂ an Evolutionarily Singular Strategy if ∂
∂ξλ(η̂, η̂) = 0.

De�nition

η̂ is a local ESS if there exists δ > 0 such that λ(η̂, ξ) > 0 for all
ξ ∈ (η̂ − δ, η̂ + δ) \ {η̂}.

• Since λ(η, η) = 0, λ(η̂, ·) attains a local minimum at ξ = η̂.

Corollary

(i) η̂ is an Evolutionarily Singular Strategy if it is an ESS.

(ii) If ∂
∂ξλ(η̂, η̂) = 0 and ∂2

∂ξ2
λ(η̂, η̂) > 0, then η̂ is a local ESS.
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Main Results

Recall: Evolutionarily Singular Strategies are candidates for ESS.

Theorem (Lam-Lou)

Suppose
maxΩ̄ m

minΩ̄ m
≤ 3 + 2

√
2. Given any Λ > 0, µ small, there is

exactly one evolutionarily singular strategy, denoted as η̂, in [0,Λ].
Moreover, η̂ → η0 as µ→ 0, where η0 is the unique positive root of

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm) =

∫
Ω
e−ηmm(1− ηm)|∇m|2.

Corollary

Let Ω = (0, 1) and mx > 0 in [0, 1]. Then for µ small, there exists

a unique evolutionarily singular strategy in [0,∞).

• Is η̂ an ESS?
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Main Results

Theorem (Lam-Lou)

Supppose that Ω is convex with diameter d, and

d‖∇ lnm‖∞ ≤ α0 ≈ 0.814.

Then for µ > 0 su�ciently small, η̂ is a local ESS.

• α0 is the unique root of t 7→ 4t + e−t + 2 ln t − 2− 2 lnπ.

• maxΩ̄ m

minΩ̄ m
≤ exp d‖∇ lnm‖∞ ≤ eα0 ≈ 2.257 < 3 + 2

√
2.
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Conditional Dispersal
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Main Results

• The critical constant 3 + 2
√
2 is strict.

Theorem (Lam-Lou)

Let Ω = (0, 1). For any L > 3 + 2
√
2, there exists m ∈ C 2 with

m,mx > 0 and
maxΩ̄ m

minΩ̄ m
= L such that for all µ small, then

(i) there are at least 3 evolutionarily singular strategies,

(ii) one of which is not a local ESS.

• Hunch: the other two are local ESS.
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Conditional Dispersal
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Conditional Dispersal
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Plan

We shall sketch the proof of Theorems 1 and 2, and comment on
the proof of Theorem 3.
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Formula for λξ =
∂λ
∂ξ

By arguments involving integration by parts, one can derive the
following formula for the selection gradient.

λξ
µ

(η, η)

∫
Ω
e−ηmũ2 = −

∫
Ω
ũ∇m · ∇(e−ηmũ).

It remains to study its roots as µ→ 0.
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Convergence of ũ → m as µ→ 0

{
µ∇ · (∇ũ − ηũ∇m) + ũ(m − ũ) = 0 in Ω,
∂ũ
∂n − ηũ

∂m
∂n = 0 on ∂Ω.

Theorem

ũ → m in L∞(Ω) as µ→ 0.

• Proof: e.g. Method of upper/lower solution.
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Convergence of ũ → m as µ→ 0

In addition to the fact that ũ → m uniformly in Ω̄, we have

Theorem

ũ → m in H1(Ω).

Set η = 0 for simplicity.

µ∆ũ + ũ(m − ũ) = 0.

−µ∆(m − ũ) + ũ(m − ũ) = −µ∆m.

Multiply the following by (m − ũ) and integrate by parts,

µ
∫

Ω |∇(m − ũ)|2 +
∫

Ω ũ(m − ũ)2

= µ
∫
∂Ω

∂m
∂n (m − ũ)− µ

∫
Ω ∆m(m − ũ)

= Cµ‖ũ −m‖∞ = o(µ)

Actually one can prove, locally uniformly in η, that∫
Ω
|∇ũ −∇m|φ2 ≤ C‖ũ −m‖∞‖φ‖2H1 .
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|∇ũ −∇m|φ2 ≤ C‖ũ −m‖∞‖φ‖2H1 .

ESS in Spatial Models 24 / 31 King-Yeung Lam (Adrian)



Convergence of ũ → m as µ→ 0
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|∇ũ −∇m|φ2 ≤ C‖ũ −m‖∞‖φ‖2H1 .

ESS in Spatial Models 24 / 31 King-Yeung Lam (Adrian)



Proof of Theorem 1

Hence

λξ
µ

= −
∫

Ω ũ∇m · ∇(e−ηmũ)∫
Ω e−ηmũ2

→ −
∫

Ω m∇m · ∇(e−ηmm)∫
Ω e−ηmm2

uniformly. In fact, one can also show that the above convergence
is in C 1

loc([0,∞)) by estimating ∂ũ
∂η .

Hence it remains to study the roots of limiting function

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm).
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Proof of Theorem 1: Limiting Problem

Theorem

If
maxΩ̄ m

minΩ̄ m
≤ 3 + 2

√
2, then

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm) =

∫
Ω
e−ηmm(1− ηm)|∇m|2

has a unique positive root η0 in [0,∞). Also, g ′0(η0) < 0.

Observe that

• g0(η) > 0 if η ≤ 1
maxΩ̄ m

and g0(η) < 0 if η ≥ 1
minΩ̄ m

.

• g ′0(η) =
∫

Ω e−ηmm2(ηm − 2)|∇m|2

• g ′0(η) < 0 in η ≤ 2
maxΩ̄ m

(Done if L := maxm
minm

≤ 2).

ESS in Spatial Models 26 / 31 King-Yeung Lam (Adrian)



Proof of Theorem 1: Limiting Problem

Theorem

If
maxΩ̄ m

minΩ̄ m
≤ 3 + 2

√
2, then

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm) =

∫
Ω
e−ηmm(1− ηm)|∇m|2

has a unique positive root η0 in [0,∞). Also, g ′0(η0) < 0.

Observe that

• g0(η) > 0 if η ≤ 1
maxΩ̄ m

and g0(η) < 0 if η ≥ 1
minΩ̄ m

.

• g ′0(η) =
∫

Ω e−ηmm2(ηm − 2)|∇m|2

• g ′0(η) < 0 in η ≤ 2
maxΩ̄ m

(Done if L := maxm
minm

≤ 2).

ESS in Spatial Models 26 / 31 King-Yeung Lam (Adrian)



Proof of Theorem 1: Limiting Problem

Theorem

If
maxΩ̄ m

minΩ̄ m
≤ 3 + 2

√
2, then

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm) =

∫
Ω
e−ηmm(1− ηm)|∇m|2

has a unique positive root η0 in [0,∞). Also, g ′0(η0) < 0.

Observe that

• g0(η) > 0 if η ≤ 1
maxΩ̄ m

and g0(η) < 0 if η ≥ 1
minΩ̄ m

.

• g ′0(η) =
∫

Ω e−ηmm2(ηm − 2)|∇m|2

• g ′0(η) < 0 in η ≤ 2
maxΩ̄ m

(Done if L := maxm
minm

≤ 2).

ESS in Spatial Models 26 / 31 King-Yeung Lam (Adrian)



Proof of Theorem 1: Limiting Problem

Theorem

If
maxΩ̄ m

minΩ̄ m
≤ 3 + 2

√
2, then

g0(η) =

∫
Ω
m∇m · ∇(e−ηmm) =

∫
Ω
e−ηmm(1− ηm)|∇m|2

has a unique positive root η0 in [0,∞). Also, g ′0(η0) < 0.

Observe that

• g0(η) > 0 if η ≤ 1
maxΩ̄ m

and g0(η) < 0 if η ≥ 1
minΩ̄ m

.

• g ′0(η) =
∫

Ω e−ηmm2(ηm − 2)|∇m|2

• g ′0(η) < 0 in η ≤ 2
maxΩ̄ m

(Done if L := maxm
minm

≤ 2).
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Proof of Theorem 1: Limiting Problem

More generally, ηpg0(η) is strictly decreasing if

η ∈

[
p + 2−

√
p2 + 4

2minΩ̄ m
,
p + 2 +

√
p2 + 4

2maxΩ̄ m

]
.

Let x0 = 2, xi = 1 + (1− xi−1

L
)−1 and pi =

xi−1(2L−xi−1)
L(L−xi−1) , then

xi−1 < xi and η
pg0(η) is strictly decreasing in

[
xi−1

maxΩ̄ m
, xi
maxΩ̄ m

]
.

• If L < 3 + 2
√
2, then xi0 ≥ L for some i0.

• If L = 3 + 2
√
2, then use in�nitely many i 's.
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Counter Example for maxm
minm

= b

a
> 3+ 2

√
2

• It remains to produce η̃ such that g0(η̃) = 0 and g ′0(η̃) > 0.

Assume Ω = (0, 1) and mx > 0, then

η2g0(η) = η2
∫ 1

0

e−ηmm(1− ηm)(m′)2 dx

=

∫ 1

0

m′(ηm)(1− ηm)e−ηm(ηm)′ dx =

∫ ηm(1)

ηm(0)
m′(x)h(s) ds

where h(s) = s(1− s)e−s . Then take

m′(x) =


L1 x ∈ [0, ε/L1],
L2 x ∈ [1− ε/L2, 1],

L3 := (b−ε)−(a+ε)
1− ε

L1
− ε

L2

otherwise.

ESS in Spatial Models 28 / 31 King-Yeung Lam (Adrian)



Counter Example for maxm
minm

= b

a
> 3+ 2

√
2

• It remains to produce η̃ such that g0(η̃) = 0 and g ′0(η̃) > 0.

Assume Ω = (0, 1) and mx > 0, then

η2g0(η) = η2
∫ 1

0

e−ηmm(1− ηm)(m′)2 dx

=

∫ 1

0

m′(ηm)(1− ηm)e−ηm(ηm)′ dx =

∫ ηm(1)

ηm(0)
m′(x)h(s) ds

where h(s) = s(1− s)e−s . Then take

m′(x) =


L1 x ∈ [0, ε/L1],
L2 x ∈ [1− ε/L2, 1],

L3 := (b−ε)−(a+ε)
1− ε

L1
− ε

L2

otherwise.

ESS in Spatial Models 28 / 31 King-Yeung Lam (Adrian)



Counter Example for maxm
minm

= b

a
> 3+ 2

√
2

• It remains to produce η̃ such that g0(η̃) = 0 and g ′0(η̃) > 0.

Assume Ω = (0, 1) and mx > 0, then

η2g0(η) = η2
∫ 1

0

e−ηmm(1− ηm)(m′)2 dx

=

∫ 1

0

m′(ηm)(1− ηm)e−ηm(ηm)′ dx =

∫ ηm(1)

ηm(0)
m′(x)h(s) ds

where h(s) = s(1− s)e−s . Then take

m′(x) =


L1 x ∈ [0, ε/L1],
L2 x ∈ [1− ε/L2, 1],

L3 := (b−ε)−(a+ε)
1− ε

L1
− ε

L2

otherwise.

ESS in Spatial Models 28 / 31 King-Yeung Lam (Adrian)



Proof of Theorem 2 (η̂ is an ESS)

Corollary

If λξ(η̂) = 0 and λξξ(η̂) > 0, then η̂ is a local ESS.

• Step 1: Estimate H1 norm of ϕk and ϕξ ⇒ limiting problem.

• Step 2: Transform the limiting problem

• Step 3: Apply the Poincaré's inequality to reduce to a
condition on the �rst positive eigenvalue of a certain problem

• Step 4: Optimal Estimate by Payne and Weinberger for convex
domains

Theorem (Payne-Weinberger(60'))

Suppose Ω is convex with diameter d, then

µN2 ≥
π2

d2
.
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Summary and Future Work

Related Work:

"Ideal Free Distribution" implies ESS. [Cantrell, Cosner, Lou
(2010)][Averill et. al.(2012)]

Summary:

For the �rst time, existence and uniqueness/multiplicity result for
ESS which is not ideal free is obtained in the context of spatial
models, which is the natural setting for the discussion of evolution
of dispersal.

Future Work:

Can one derive a model for the polymorphic situation?
u = u(x , t; η) and under some scaling,

u →
∑
i

ρi (t)δi (x − x̄(t)).
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Thank you!
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