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Introduction

The system

We consider the following strongly coupled p Laplacian system{
−div(A(u,Du)) = f in Q,
u = 0 on ∂Q

(1)

Here:

1 Q is a bounded domain in IRn (n > 1),
2 u, f have vector valued in IRm (m > 1) (for simplicity f is bounded),
3 A(u,Du) is a matrix n ×m.

We will characterize the regular set of a BMO weak solution u.
The matrix A(u,Du) can be nonregular and singular.
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Introduction

Historical note:

Classical fact: bounded weak solutions to scalar eqns are Hölder
continuous.
Counterexamples exist for systems: bounded weak solutions may
not be Hölder continuous.
Partial regularity: bounded weak solutions for regular elliptic
systems are Hölder continuous on a full measure and open set.
Key assumptions: Boundedness of weak solution⇒ Regular
ellipticity.

We will depart from these assumptions and consider BMO weak
solutions to nonregular/singular systems.
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Function spaces and Assumptions

Function spaces

a locally integrable vector valued function u : Q → IRm is BMO if the
seminorm

‖u‖BMO(Q) = sup
B⊂Q

∫
B
|u − uB| dz <∞,

where the supremum is taken over all balls B ⊂ Q.
Let µ be a doubling measure on IRn and Ψ be a µ-measurable
nonnegative function and γ > 1. We say that Ψ ∈ Aγ(µ) or Ψ is an
Aγ(dµ) weight if the quantity

[Ψ]γ = sup
B

(∫
B

Ψ dµ
)(∫

B
Ψ1−γ′ dµ

)γ−1

<∞. (2)

Here, γ′ = γ/(γ − 1) and the supremum is taken over all balls B of IRn.
The A∞(µ) class is defined by A∞(µ) = ∪γ>1Aγ(µ).
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Function spaces and Assumptions

Uniform ellipticity and Continuity

A.1) (Ellipticity) For any u ∈ IRm and ζ, ξ ∈ IRnm there are
nonnegative constants λ(u),Λ(u) and p > 1 such that

λ(u)|ζ|p ≤ 〈A(u, ζ), ζ〉 ≤ Λ(u)|ζ|p. (3)

and
〈A(u, ζ)− A(u, ξ), ζ − ξ〉 ≥ λ(u)|ζ − ξ|p. (4)

Moreover, there are nonnegative constants λ0, λ1 such
that

λ(u) ≥ λ0, (5)

Λ(u) ≤ λ1λ(u). (6)

A.2) (Continuity) For any u, v ∈ IRm and ζ ∈ IRnm there is a
function ∆(u, v) such that

|A(u, ζ)− A(v , ζ)| ≤ ∆(u, v)|ζ|p−1. (7)

Dung Le (UTSA) Regularity Set December 12, 2012 6 / 20



Function spaces and Assumptions

Uniform ellipticity and Continuity

A.1) (Ellipticity) For any u ∈ IRm and ζ, ξ ∈ IRnm there are
nonnegative constants λ(u),Λ(u) and p > 1 such that

λ(u)|ζ|p ≤ 〈A(u, ζ), ζ〉 ≤ Λ(u)|ζ|p. (3)

and
〈A(u, ζ)− A(u, ξ), ζ − ξ〉 ≥ λ(u)|ζ − ξ|p. (4)

Moreover, there are nonnegative constants λ0, λ1 such
that

λ(u) ≥ λ0, (5)

Λ(u) ≤ λ1λ(u). (6)

A.2) (Continuity) For any u, v ∈ IRm and ζ ∈ IRnm there is a
function ∆(u, v) such that

|A(u, ζ)− A(v , ζ)| ≤ ∆(u, v)|ζ|p−1. (7)

Dung Le (UTSA) Regularity Set December 12, 2012 6 / 20



Function spaces and Assumptions

On the ellipticity constant

L.1) λ(u) is quasi convex in the sense that there is a constant
C such that for any vector valued function u and any ball
QR ⊂ IRn

λ(uR) ≤ C(λ(u))R. (8)

L.2) A(u, ζ) is Hölder continuous in u. In fact, for the ellipticity
and continuity constants λ(u),∆ in A.2) there are positive
α, β, θ1, α0, β0, θ0 such that for any vectors u, v ∈ IRm

|∆(u, v)| ≤ max{λ(u)αλ(v)β, λ(v)αλ(u)β}|u − v |θ1 , (9)

and

|λ(u)−λ(v)| ≤ C max{λ(u)α0λ(v)β0 , λ(v)α0λ(u)β0}|u−v |θ0 .
(10)
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Function spaces and Assumptions

Higher integrability result with weights

Using only the assumption that λ(u) belongs to some Aq(dz) class,
with q being determined by p,n we will show that there exist positive
numbers γ∗,C depending only on the Aq characterization of λ(u) such
that for any γ ∈ (1, γ∗] and τ ∈ (0,1) the following higher integrability
result holds(∫

QτR

|Du|γp dµ
) 1
γp

≤ C
(∫

QR

|Du|p dµ
) 1

p

, dµ = λ(u)dz. (11)
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Function spaces and Assumptions

On the parameters

With γ∗ being described earlier, we will consider
P.1) For some γ ∈ (1, γ∗]

α >
1
p′
, β ≤ 1

p
− 1

p′γ′
, α ≤ β, (12)

β0 > α0, β0 ≤ 1/γ′. (13)

P.2) For some γ ∈ (1, γ∗]

α ≤ 1
p′
, β >

1
p
− 1

p′γ′
, α > β, (14)

β0 ≤ α0, β0 > 1/γ′. (15)

P.3) There is γ ∈ (1, γ∗] such that

α+β−1 < min{ 1
p′γ′

,pθ1} and α0+β0−1 < min{ 1
γ′
, θ0}.
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Main results

First theorem

On the regular set of a BMO weak solution u to (1)

Theorem
Assume A.1), A.2), B), L.1), L.2), P.1) or P.2), and P.3). Assume also
that λ0 > 0. There exist positive constants C, ε0, ν0 depending only on
‖u‖BMO, ‖λ(u)‖BMO such that for

Σ0 = {z0 ∈ Q : lim inf
R→0

∫
QR(z0)

|u − uR|pλ(u) dz < ε0} (16)

then for any balls Qρ,QR contained in Q and centered at z0 ∈ Σ0 the
following holds∫

Qρ
|u − uρ|pλ(u) dz ≤ C

( ρ
R

)ν0
∫

QR

|u − uR|pλ(u) dz. (17)

Moreover u is locally Hölder continuous in Σ0.
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Moreover u is locally Hölder continuous in Σ0.
Dung Le (UTSA) Regularity Set December 12, 2012 10 / 20



Main results

First theorem

On the regular set of a BMO weak solution u to (1)

Theorem
Assume A.1), A.2), B), L.1), L.2), P.1) or P.2), and P.3). Assume also
that λ0 > 0. There exist positive constants C, ε0, ν0 depending only on
‖u‖BMO, ‖λ(u)‖BMO such that for

Σ0 = {z0 ∈ Q : lim inf
R→0

∫
QR(z0)

|u − uR|pλ(u) dz < ε0} (16)

then for any balls Qρ,QR contained in Q and centered at z0 ∈ Σ0 the
following holds∫

Qρ
|u − uρ|pλ(u) dz ≤ C

( ρ
R

)ν0
∫

QR

|u − uR|pλ(u) dz. (17)

Moreover u is locally Hölder continuous in Σ0.
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Main results

Quasi concave λ(u)

Our next result concerns the case where λ(u) does not satisfy the
quasi convexity condition L.1) but

L.1’) λ(u) is quasi concave in the sense that there is a constant
C such that for any vector valued function u and any ball
QR ⊂ IRn

λ(uR) ≥ C(λ(u))R. (18)

In this case, we will assume that u locally has the vanishing mean
oscillation (VMO) property. We say that a locally integrable function u
has VMO property at a point z0, or VMO at that point, if

lim
R→0

∫
Qz0,R

|u − uQz0,R
| dz = 0.
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Main results

Second theorem

We have the following result.

Theorem
holderthm2 Assume that A.1), A.2), B), L.1’) hold, λ0 > 0, and that
there are positive α, β, θ1 such that for any vectors u, v ∈ IRm

|∆(u, v)| ≤ max{λ(u)αλ(v)β, λ(v)αλ(u)β}|u − v |θ1 , (19)

with α + β ≤ 1/p. Then a BMO weak solution u to (1) is Hölder at z0 if
u and λ(u) have VMO property at z0.

Of course, if λ(u) is Hölder in u then ‖λ(u)‖BMO(QR) is bounded by
‖u‖BMO(QR), and thus the above theorem asserts that u is Hölder at a
point if and only if it is VMO there.

Dung Le (UTSA) Regularity Set December 12, 2012 12 / 20



Main results

The singular case

We can drop the assumption that λ(u) is BMO in B) to have the
following result concerning the singular case λ0 = 0.
We only assume A.1), A.2), L.1), L.2) with λ0 = 0. In addition, suppose
that P.1)-P.3) are verified and

α + β − 1 and α0 + β0 − 1 > 0, (20)

λ(u) ∈ Aγ0 and λ(u)−1 ∈ Aσ0 (21)

γ0 ∈ (1,p(n − 1)/n] and σ0 ∈ (1,min{2,n/(n − α(p))}).
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Main results

The third theorem

Theorem
There are constants C, ε0ν0 depending on γ0, γ0, [λ(u)]γ0 and
[λ(u)−1]σ0such that if we define

Σ0 = {z0 ∈ Q : lim inf
R→0

∫
QR(z0)

|u − uR|pλ(u) dz < ε0} (22)

then for any balls Qρ,QR in Q and centered at z0 ∈ Σ0 the following
decay estimate holds∫

Qρ
|u − uρ|pλ(u) dz ≤ C

( ρ
R

)ν0
∫

QR

|u − uR|pλ(u) dz. (23)
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Main results

Notes

Concerning the Hölder continuity of u we consider a point z0 ∈ Σ0
where λ(u(z0)) > 0. Therefore, if q ∈ (1,p) then

∫
Qρ
|u − uρ|q dz ≤

(∫
Qρ

(λ(u))
− q

p−q dz

) p−q
p
(∫

Qρ
|u − uρ|pλ(u) dz

) q
p

.

By Lebesgue’s theorem and the fact that λ(u(z0)) > 0, the first factor
on the right is bounded when ρ is sufficiently small. Combining these
facts with (23) we assert that u is Hölder continuous at z0.
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Sketch of proof

Tools

Caccioppoli-type inequality:∫
QR

|Du|pλ(u) dz ≤ CR−p
∫

Q2R

|u −
∫

Q2R

u dz|pλ(u) dz. (24)

Weighted Sobolev-Poincaré inequality: Let dµ = λ(u)dz and
l = pγn/(γn + p). Then∫

Q
|u −

∫
Q

u dz|p dµ ≤ C([λ(u)]γ)Rp
(∫

Q
|Du|l dµ

) p
l

. (25)

Higher integrability of gradients: There are γ ∈ (1, γ∗) and τ ∈ (0,1)
such that(∫

QτR

|Du|γp dµ
) 1
γp

≤ C(γ∗, [λ(u)]γ0 , τ)

(∫
QR

|Du|p dµ
) 1

p

. (26)

Here, C(γ∗, [λ(u)]γ0 , τ) is bounded in τ−1.
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QR

|Du|p dµ
) 1

p

. (26)

Here, C(γ∗, [λ(u)]γ0 , τ) is bounded in τ−1.
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Sketch of proof
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Sketch of proof

Approximation

For any ball QR contained in Q we will compare our solution u with that
of {

−div(A(uR,DV )) = f in QR,
V = u on ∂QR.

(27)

Splitting domains: λ(u), λ(uR) are NOT comparable. Let Q1
R be any

measurable subset of QR and Q2
R = QR \Q1

R. For w = V − u, we have∫
Q1

R

λ(uR)|Dw |p dz +

∫
Q2

R

λ(u)|Dw |p dz ≤∫
Q1

R

|∆(u,uR)||Du|p−1|Dw |dz +

∫
Q2

R

|∆(u,uR)||DV |p−1|Dw |dz.
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Sketch of proof

Decay estimate for DV

For some constant α(p) > 0∫
QτR

|DV |p dz ≤ Cτ−p+α(p)
∫

QR

|DV |p dz. (28)

This usually gives Hölder continuity for V .
Can this be transfered to Du?
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This usually gives Hölder continuity for V .
Can this be transfered to Du?

Dung Le (UTSA) Regularity Set December 12, 2012 18 / 20



Sketch of proof

Decay estimate for Du

For any τ ∈ (0,1/2) and positive KR such that
KR ≤ C0 min{(λ(u))R, λ(uR)}, we can find positive constants C∗, ν
such that

(τR)p
∫

QτR

|Du|pλ(u) dz ≤ C∗[τ−n+pΦ(u,R)+τν ]Rp
∫

Q2R

|Du|pλ(u) dz.

(29)
Here, ν depends on n,p and C∗ depends on n,p,C0, [λ(u)]γ0 , [λ(u)]γ′

and [λ(u)−1]σ0 .
Splitting QR we can prove that Φ(u,R) is small if the weighted mean
oscillation of u is.
Decay estimate for Du then follows.
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Sketch of proof

Φ(u,R)

For any measurable subset Q1
R of QR and Q2

R = QR \Q1
R

Φ(u,R) = Φ0(u,R) + Φ1(u,R) + Φ2(u,R)

Φ0(u,R) =

 1
|QR|

∫
Q1

R

∣∣∣∣∣∣ λ(u)− KR

λ(u)
1
γ (λ(u))

1
γ′

R

∣∣∣∣∣∣
γ′

dz


1
γ′

, (30)

Φ1(u,R) =

 1
|QR|

∫
Q1

R

∣∣∣∣∣ |∆(u,uR)|

λ(uR)
1
pλ(u)

1
p′γ

∣∣∣∣∣
p′γ′

dz

 1
γ′

(λ(u))
− 1
γ

R , (31)

and

Φ2(u,R) =

 1
|QR|

∫
Q2

R

∣∣∣∣∣ |∆(u,uR)|

λ(u)
1
p

∣∣∣∣∣
p′γ′

dz

 1
γ′

(λ(u))−1
R . (32)
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