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Reaction-diffusion system

∂u

∂t
= D

∂2u

∂x2
− E

∂u

∂x
+ f(u), (1)

where

u(t, x) = (u1(t, x), u2(t, x), ..., uk(t, x))
D = diag(d1, ..., dk), di ≥ 0
E = diag(e1, ..., ek)
f(u) = (f1(u), f2(u), ..., fk(u))
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Hypotheses I

i. There is a proper subset Σ0 of {1, ..., k} such that
di = 0 for i ∈ Σ0 and di > 0 for i 6∈ Σ0.

ii. f(0) = 0, there is a constant β >> 0 such that
f(β) = 0 which is minimal.

iii. The system is cooperative; i.e., fi (α) is
nondecreasing in all components of α with the
possible exception of the ith one.

iv. f(α) is uniformly Lipschitz continuous in α so
that there is ρ > 0 such that for any αi ≥ 0,
i = 1, 2, |f(α1)− f(α2)| ≤ ρ|α1 −α2|.
v. f has the Jacobian f ′(0) at 0 with the property
that f ′(0) has a positive eigenvalue whose
eigenvector has positive components.
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Spreading speeds

Let Q denote the time one solution map of (1). Q is
order-preserving. Define

an+1(c ; x) = max{φ(x), [Q(an(c; ·)](x + c)}

where a0(c ; x) = φ(x), and φ(x) is any nonincreasing continuous
function with φ(x) = 0 for x ≥ 0 and 0 << φ(−∞) << β. an

increases to a function a(c ; x). a(c;−∞) = β with a(c;∞) an
equilibrium nondecreasing in c and independent of the choice of φ.
Define

c∗ := sup{c ; a(c ;∞) = β},
and

c∗+ := sup{c; a(c;∞) 6= 0}.
Clearly c∗+ ≥ c∗. If there are only two equilibria 0 and β, c∗+ = c∗
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Spreading speeds

Theorem
c∗ is the slowest spreading speed and c∗+ is an upper bound for all
the spreading speeds for (1).

H. F. Weinberger, M. Lewis, and B. Li. J. Math. Biol. 45 (2002),
183-218.
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Definition of spreading speed

Consider for example

∂u

∂t
= d

∂2u

∂x2
+ ru(1− u).

c∗ = 2
√

rd is the spreading speed in the following sense:
i. If 0 ≤ u(x , 0) < 1 and u(x , 0) ≡ 0 for large x , then for any ε > 0

lim
x→∞

{
max

x≥(c∗+ε)t
u(x , t)

}
= 0.

ii. For every positive number σ there exists a positive number rσ
such that if 0 ≤ u(x , 0) ≤ 1, and if u(x , 0) ≥ σ on an interval of
length rσ, then for any positive ε,

lim
x→∞

{
max

|x |≤(c∗−ε)t
(1− u(x , t))

}
= 0
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Linear determinacy hypotheses

i. The matrix f ′(0) is in Frobenius normal form. Let

Cµ = µ2D + µE + f ′(0).

There is a positive entry to the left of each of the
irreducible diagonal blocks other than the first
(uppermost) one.

ii. Let γσ(µ) be the principal eigenvalue of the σth
irreducible diagonal block of Cµ. Let ξ(µ) be the
eigenvector of Cµ which corresponds to λ1(µ).

a. γ1(0) > 1; and
b. γ1(0) > γσ(0) for all σ > 0.
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Linear Determinacy Hypotheses

iv. Let
c̄ := inf

µ>0
(1/µ)γ1(µ) (2)

Either
(a) µ̄ is finite γ1(µ̄) > γσ(µ̄), and

f(min{τξ(µ̄), β})− f ′(0)τξ(µ̄) ≤ 0

for all positive τ ; or
(b) there is a sequence µν ↗ µ̄ such that for each ν
the above inequalities with µ̄ replaced by µν are valid

Theorem
Assume that Hypotheses I and Linear determinacy Hypotheses are
satisfied. Then c∗ = c∗+ = c̄ where c̄ is given by (2).

H. F. Weinberger, M. Lewis, and B. Li. J. Math. Biol. 45 (2002),
183-218.
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Traveling waves in non-degenerate systems

Assume that Hypotheses I.ii-v are satisfied and all di > 0.

Theorem

i. for c ≥ c∗ , there is a nonincreasing traveling wave solution
w(x − ct) connecting β and an equilibrium other than β; and

ii. there is no nonincreasing traveling wave w(x − ct) with speed
c < c∗ connecting β and an equilibrium other than β; and

Theorem

i. for c ≥ c∗+, there is a nonincreasing traveling wave solution
w(x − ct) connecting 0 and an equilibrium other than 0; and

ii. there is no nonincreasing traveling wave w(x − ct) with speed
c < c∗+ connecting 0 and β.

B. Li, H. F. Weinberger and M. Lewis. Math. Biosci. 196 (2005),
82-98
B. Li and L. Zhang. Nonlinearity 24 (2011), 1759-1776
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Non-compactness

If di = 0 for some i , the time-t solution operator Qt is not
compact in general, and consequently the previously established
traveling wave results cannot be used.

Weak compactness assumption is satisfied by some spatial
evolution equations.

X. Liang, Yi, and X.-Q. Zhao. J. Diff. Eqs 231 (2006), 57-77.
X. Liang and X.-Q. Zhao. J. Funct. Anal. 259 (2010), 857-903.
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Another example of noncompact differential system

∂u

∂t
= D

∫ ∞

−∞
K(x − y)u(y)dy − Du(x) + f(u).

Y. Jin and X.-Q. Zhao. Nonlinearity 22 (2009), 1167-1189
C. Hu and B. Li 2012 (preprint)
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Integral system

Choose κ > ρ where ρ is given in Hypothesis I iv. Define
H(u) = (f(u) + κu)/κ. Then f (α) = 0 if and only if H(α) = α.
For i ∈ Σ0, if c − ei > 0, define

(mc)i (x) =

{
0 when x > 0,

κ
c−ei

e
κ

c−ei
x

when x ≤ 0,

(mc)i is defined in a similar way if c − ei < 0,
For i 6∈ Σ0, define

(mc)i (x) =
κ

di (λi1 − λi2)

{
e−λi1x when x ≥ 0

e−λi2x when x < 0,

where λi1 and λi2 are roots of diz
2 − (c − ei )z − κ = 0.

J. Wu and X. Zou. J. Dyn. Diff. Eqs. 13 (2001), 651-686.
J. Fang and X. Q. Zhao. J. Dyn. Diff. Eqs 21 (2009), 663-680.
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Integral system

Let
mc(x) = diag((mc)1(x), ..., (mc)k(x)).

We have that ∫ ∞

−∞
mc(x)dx = I.

Theorem
Assume that di ≥ 0 for all i and that Hypotheses I ii-v are
satisfied. Let c 6= ei for all i with di = 0. Then w(x − ct) is a
nonincreasing traveling wave solution of (1) connecting two
different constant equilibria ν1 and ν2 if and only if w is a
continuous nonincreasing function satisfying

w(x) =

∫ ∞

−∞
mc(x − y)H(u)(y)dy .

B. Li. J. Diff Eqs. 252 (2012), 4842 - 4861.
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Proof outline

If di = 0, (c − ei )w
′
i − κwi = −(fi (w) + κwi ). Assume that

c − ei > 0.

wi (x) = wi (x0)e
κ

c−ei
(x−x0) +

κ

(c − ei )

∫ x0

x
e

κ
c−ei

(x−y)
Hi (w)(y)dy .

We take the limit x0 →∞ to obtain

wi (x) =
κ

c − ei

∫ ∞

x
e(c−ei )(x−y)Hi (w)(y)dy

which is equivalent to

wi (x) =

∫ ∞

−∞
(mc)i (x − y)Hi (w)(y)dy .

If di > 0, diw
′′
i + (c − ei )w

′
i − κwi = −(fi (w) + κwi ). We solve the

system, use integration by parts, and take appropriate limits to
show that wi satisfies the integral equation.
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Approximation and equicontinuity

Let D(`) = D + (1/`)I with ` ≥ 1. D(`) is a diagonal matrix with
positive diagonal entries. The solution map operators for

∂u

∂t
= D(`) ∂

2u

∂x2
− E

∂u

∂x
+ f(u(t, x)), (3)

are compact, and the existing theory on the existence of traveling
wave solutions can be applied to (3).

Lemma
Assume that w(`)(x − ct) is a nonincreasing traveling wave
solution of (3) with speed c 6= ei for i ∈ Σ0. Then the family w(`)

is an equicontinuous family of functions.

Idea: using

w(`)(x) =

∫ ∞

−∞
m

(`)
c (x − y)H(w(`))(y)dy
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Existence of traveling waves under Hypotheses I

Define c̃∗ and c̃∗+ using the definitions for c∗ and c∗+ with Q
replaced by the time one solution map of (3).

Theorem

i. for c ≥ c̃∗ and c 6= ei for i ∈ Σ0, there is a nonincreasing
traveling wave w(x − ct) connecting β and an equilibrium
other than β; and

ii. there is no nonincreasing traveling w(x − ct) with c < c̃∗

connecting β and an equilibrium other than β.

Theorem

i. for c ≥ c̃∗+ and c 6= ei for i ∈ Σ0, there is a nonincreasing
traveling wave w(x − ct) connecting 0 and an equilibrium
other than 0; and

ii. there is no nonincreasing traveling wave w(x − ct) with
c < c̃∗+ connecting 0 and β.
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Proof outline of first theorem

1. For c > c̃∗, (3) has traveling wave w(`)(x − ct) with
|β −w(`)(0)| = η, connecting β, and an equilibrium other than β.

2. lim`→∞
∫∞
−∞ |(m

(`)
c )i (x)− (mc)i (x)|dx = 0.

3. w(`) has a subsequence w(`j ) such that w(`j )(x) converges to
w(x) uniformly on every bounded interval.

4.w(`j )(x) =
∫∞
−∞mc(x − y)H(w(`j ))(y)dy +

∫∞
−∞(m

(`j )
c (y)−

mc(y))H(w(`j ))(x − y)dy . Take limits to obtain

w(x) =

∫ ∞

−∞
mc(x − y)H(w)(y)dy

5. The existence of traveling wave with speed c̃∗ is obtained by
taking an appropriate limit.
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Linear determinacy

Lemma
Assume that Hypotheses I and and Linear Determinacy Hypotheses
are satisfied. Then

c∗ = c∗+ = c̃∗ = c̃∗+ = c̄

where c̄ is given by (2).

Proof.
C

(`)
µ = µ2D(`) + µE + f ′(0) = C

(`)
µ = Cµ + (µ2/`)I. Let γ

(`)
1 (µ) be

the principal eigenvalue of C
(`)
µ .

γ
(`)
1 (µ) = γ1(µ) + µ2/`.

c∗(`) = c∗(`)+ = inf
µ>0

(1/µ)(γ1(µ) + µ2/`).

It follows that

c̃∗+ = c̃∗ = lim inf
`→∞

inf
µ>0

(1/µ)(γ1(µ) + µ2/`) = inf
µ>0

(1/µ)γ1(µ) = c̄ .
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Applications to a Lotka-Volterra competition model

∂p
∂t = d1

∂2p
∂x2 − e1

∂p
∂x + r1p(1− p − a1q),

∂q
∂t = −e2

∂q
∂x + r2q(1− q − a2p),

We assume that
a1 < 1

so that equilibrium (0, 1) is invadable. Let u = p, v = 1− q. We
have the cooperative system

∂u
∂t = d1

∂2u
∂x2 − e1

∂u
∂x + r1u(1− a1 − u + a1v),

∂v
∂t = −e2

∂v
∂x + r2(1− v)(a2u − v).

(4)

For this model c̄ = e1 + 2
√

d1(1− a1).
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Result

Let

e1 + 2
√

d1(1− a1) ≥ e2 + r2 max{a1a2 − 1, 0}
√

d1/(r1(1− a1)).
(5)

Theorem
Assume that (5) holds and a1 < 1. Then the following statements
hold for the system (4).

i. If c̄ > e2, or if c̄ = e2 and a2 ≤ 1, then for c ≥ c̄ the system
(4) has a nonincreasing traveling wave solution with speed c
connecting 0 with β;

ii. If c̄ = e2 and a2 > 1, then (4) has no classical nonincreasing
traveling wave solution with speed c̄ = e2 connecting 0 with
β; and

iii. (4) has no nonincreasing traveling wave solution with speed c
connecting 0 with β if c < c̄ .
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