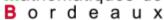


A plant pathogen multiscale problem dedicated to Chris Cosner

M. Langlais



SEGALEN

Courtesy from Pixels et Grains d'argent, and from INRA

Host-parasite system

- Vitis vinifera, vine stock & plot,
 - Spatial structures : leaves, plants, plots, no dispersal,
 - Seasonal variations : growing season, climate (temperature),
 - Highly anthropized system : wide diversity of cropping systems driving host dynamics (secondary shoots / leaves appearance),
 - No specific resistance of the host.

Host-parasite system

- Vitis vinifera, vine stock & plot,
 - **Spatial structures :** leaves, plant, plot scales, **no dispersal**,
 - Seasonal variations : growing season, climate (temperature),
 - Highly anthropized system : wide diversity of cropping systems driving host dynamics (secondary shoots / leaves appearance),
 - No specific resistance of the host.
- Erysiphe necator, powdery mildew,
 - Airborne dispersal of conidia (spores),
 - Sensitive to the climate : wind speed & direction (?),
 - Sensitive to the quality of its host : e.g., age of leaves, ...
 - Hard to detect and quantify at the vineyard level,
 - No reliable prevention tool : routine chemical sprays,
 - 30% world market in fungicides dedicated to vine, (F: 60 M€/year),
 - Over-wintering in the bark of vine stocks & within dormant buds,

Outline : multi-scale problem

 (1) Architectural discrete 3D plant - pathogen model, discrete w.r.t. time & space, over a single growing season,

 $X(n+1) = F(X(n), n, \pi(n), \theta(n)), \quad n \ge 0.$

(2) Continuous aggregated plant - pathogen model, ODEs SEIRT-like, for a perennial plant,

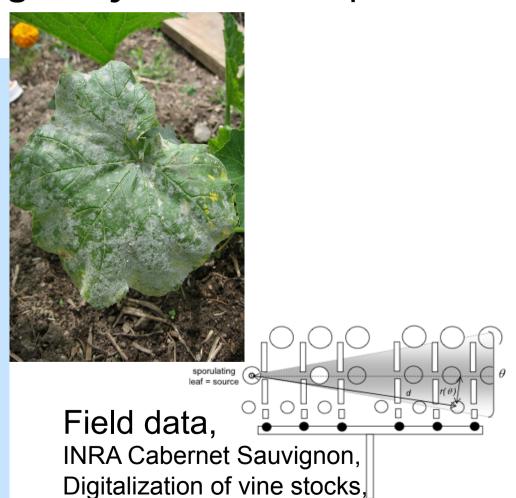
 $d_t X(t) = F^{year}(X(t), t, \pi(t)), \quad t \ge 0.$

(3) Spatially structured plot - pathogen model, RD - SEIR(T) like,

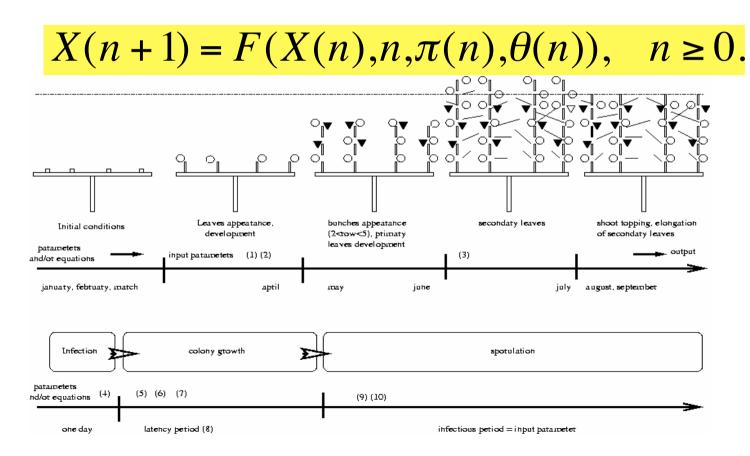
 $\partial_t U = \nabla \cdot (D(x,N)\nabla U) + V \cdot \nabla U + G^{year}(U,x,\pi(t)), \quad t \ge 0, x \in D.$

- Host dynamic: complex 3D architectural model,
- Appearance, growth, size, age, 3D localization and surface area of primary,
 - Leaves, internodes,
 - Shoots, grapes,
- Climatic scenario,
 - Daily basis,
- Secondary organs,
- Anthropization,
 - Shoot topping,

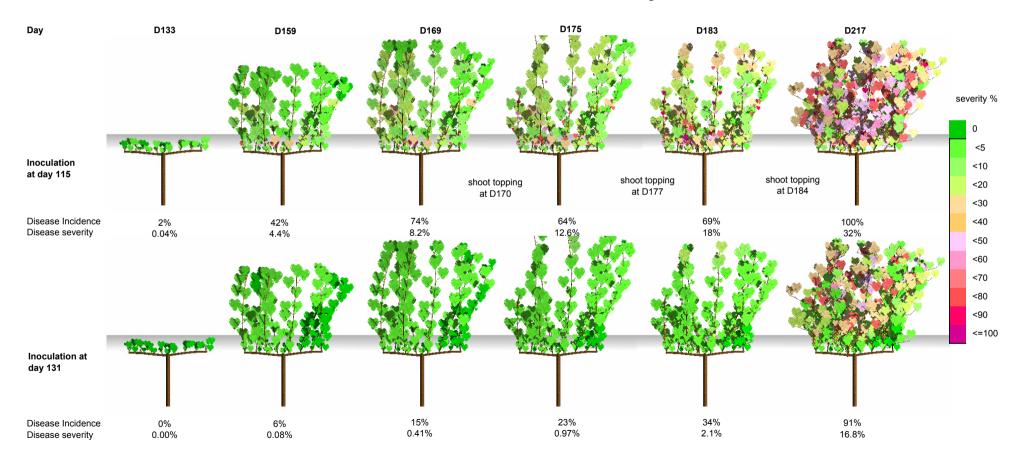
- Coupled host-pathogen dynamic : complex 3D architectural model,
- Primary infection :
 - Calendar date,
 - 3D localization on host,
- Lesion growth,
 - Latency period,
 - Spore production period,
 - Spore release,
- *Within* vine stock spore dispersal,
 - Speed of wind (daily),
- Secondary infections,



• Plant / pathogen dynamics for a growing season, complex 3D model, more than 30 parameters ...



• Scenario 1998, inoculation day : 115 vs 131,

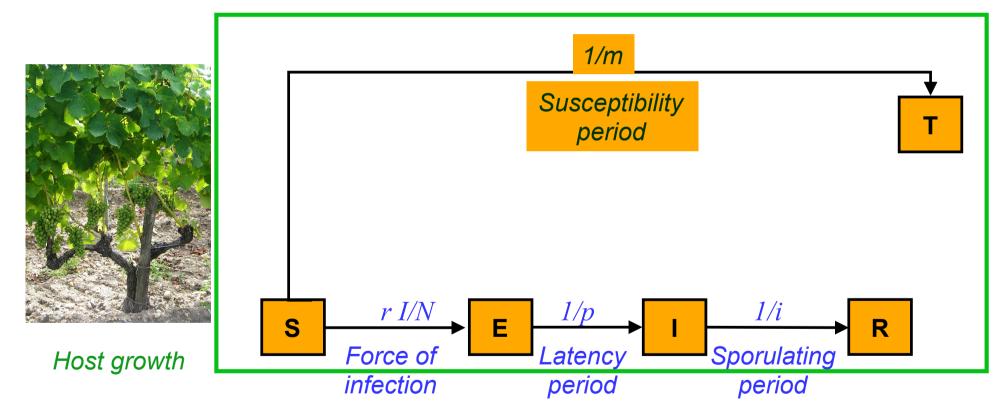


- PCA PLS analysis, Climatic scenarios and crop management do not impact the same variables,
 - Year (climate) is better correlated to early disease,
 - Crop management is more correlated to later disease,
- Sensitivity and elasticity analysis,
 - Age of leaves : susceptibility, ontogenic resistance,
 - Vigour of the host,
 - Sporulation,

IN?/

- Inoculation date,
- Temperature, dominant wind, ...
- Qualitative analysis ?

• SEIRT compartmental model w.r.t. leaf surface area,



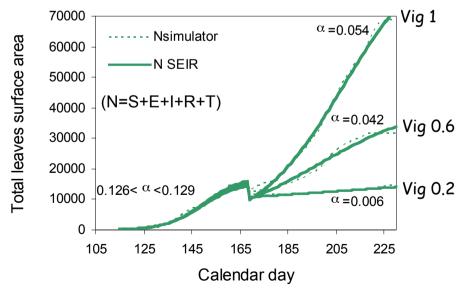
– incidence : r×S×I/N, Vanderplank, etc.

SEIRT model : Susceptible, Exposed,
 Infectious, Retired, T (on togenic resistance),

$$\begin{cases} d_t S = \Lambda - rI \frac{S}{N} - \frac{1}{m}S \\ d_t E = +rI \frac{S}{N} - \frac{1}{p}E \\ d_t I = + \frac{1}{p}E - \frac{1}{i}I \\ d_t R = + \frac{1}{i}I \\ d_t R = + \frac{1}{i}I \\ d_t T = + \frac{1}{m}S \end{cases} \Rightarrow d_t N = \Lambda = \alpha \left(1 - \frac{N}{K}\right)N.$$

– Find a set of parameters (r,α,K) yielding consistent dynamics w.r.t. the discrete model ?

- « Aggregated » ODEs model fitted with discrete model,
 - Good fitting to aggregate time-dependent processes provided,
 ≠ sets of parameters (r,α,K) at shoot topping,
 - LSM : total leaf / diseased surface area,
 - Problem at shoot topping : status of remaining leaves ?

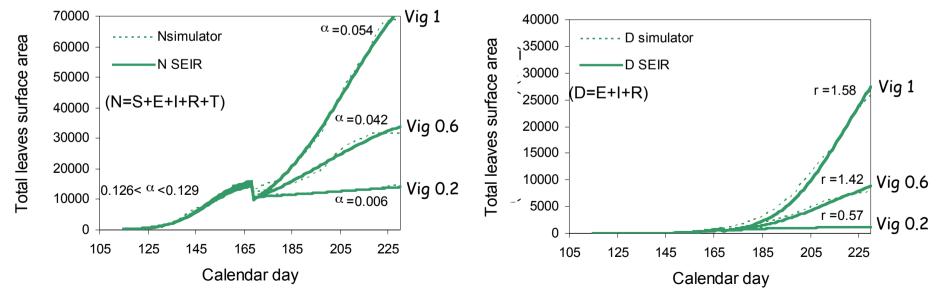


1998

- « Aggregated » ODEs model fitted with discrete model,
 - − Good fitting *to aggregate time-dependent processes* provided, \neq sets of parameters (r, α, K) at shoot topping,
 - LSM : total leaf / diseased surface area,

1998

– Problem at shoot topping : status of remaining leaves ?



- Qualitative analysis wrt standard epidemiology,
 - Computing the reproductive number R_0 , $R_0 = r \times i$,
 - Computing the effective reproductive number $R_{\text{effective}}$,
 - $\clubsuit \ R_{\text{effective}} = r \ i \ S(t) / N(t),$
 - ★ $t \rightarrow R_{\text{effective}}(t)$ « decreasing outside shoot-topping » ?

- Qualitative analysis wrt standard epidemiology,
 - Computing the reproductive number R_0 , $R_0 = r^* i$,
 - Computing the effective reproductive number $R_{\text{effective}}$,
 - $\clubsuit \ R_{\text{effective}} = r \ i \ S(t) / N(t),$
 - ★ $t \rightarrow R_{\text{effective}}(t)$ « decreasing outside shoot-topping » ?
 - Computing the asymptotic state in closed form (+ ∞ = winter)?
 - ♦ without ontogenic resistance (1/m = 0 or T = 0),

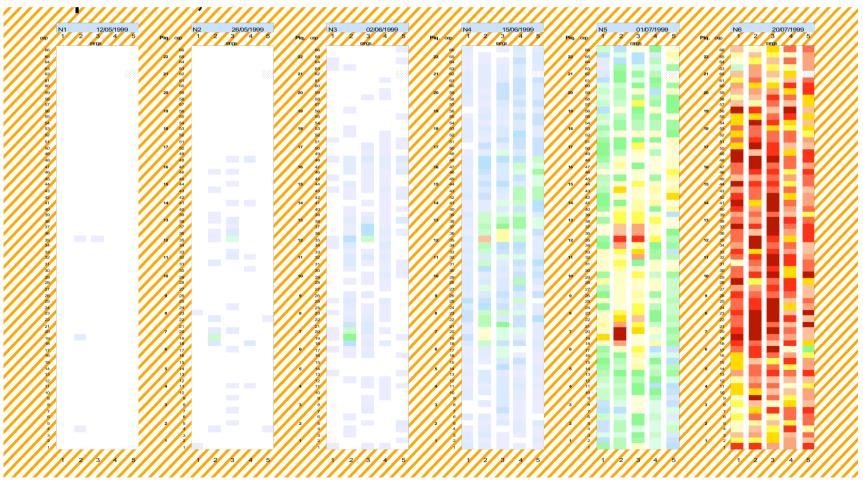
 $S = S^{infinity}, E = I = 0, R = R^{infinity}.$

✤ with ontogenic resistance,

$$S = 0$$
, $E = I = 0$, $R = R^{infinity}$, $T = T^{infinity}$.

Field data (1999), INRA Bordeaux

 Experimental plot with 5 rows & 66 vine stocks per row,



Pathogen dispersal : conceptual analysis.

Long and short distance dispersal type 1 : short alone, type 2 : both (coalescence), type 3 : (scaling effect) reduced short / large long.

Shigesada, N., Kawasaki. K.

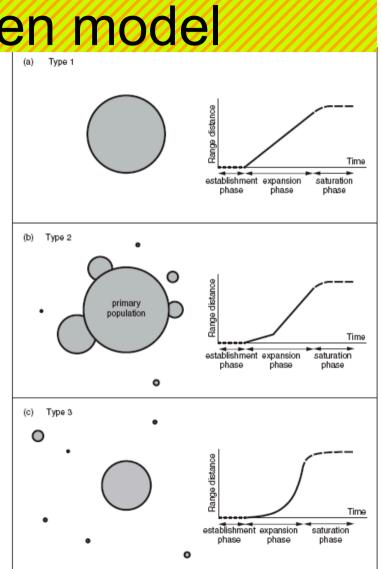
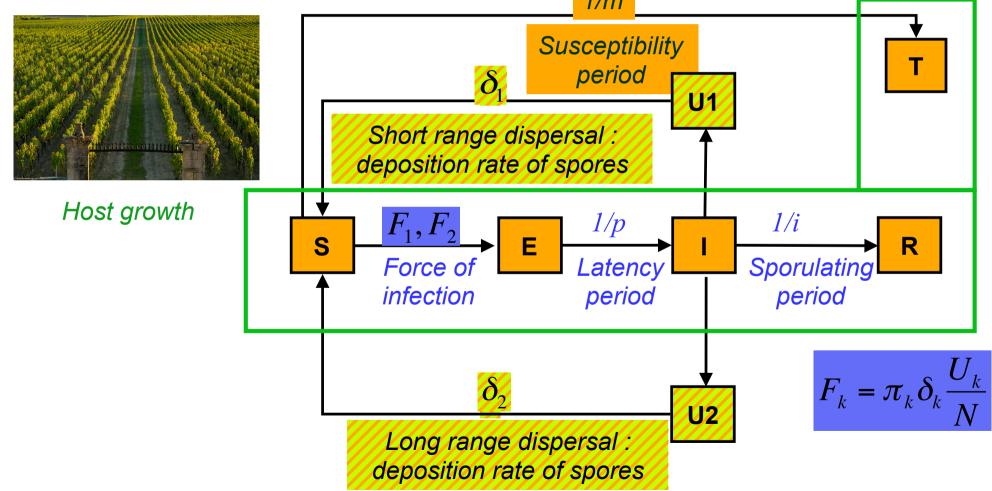


Figure 17.1 Three types of range expansions: (a) type 1, (b) type 2, and (c) type 3. For each type, the spatial pattern and range-versus-time curve are shown on the left and right, respectively. See text for detail. (Adapted from Shigesada & Kawasaki 1997, with permission of Oxford University Press.)

• SEIRT compartmental model over rows,



Reaction-**D**iffusion / SEIRT model :

(1) Reaction-Diffusion system for dispersal of spores,

 $\begin{cases} \partial_t U_1 = \nabla \cdot (d_1(x,N)\nabla U_1) - \delta_1 U_1 + \gamma f(N)I, \\ \\ \partial_t U_2 = \nabla \cdot (d_2(x,N)\nabla U_2) - V(x,t) \cdot \nabla U_2 - \delta_2 U_2 + \gamma (1 - f(N))I. \end{cases}$

 \bullet U₁ & U₂, short (plant scale) and long range dispersed spores,

- Fick's law diffusion, $0 \le d_1(x,N) \le d_2(x,N)$,
- Convection term V(x,t), for average vs strong winds (?),
- ♦ δ_i , deposition rate of spores U_i , i=1,2, $\delta_2 \leq \delta_1$,

 \checkmark γ , production rate of spores per infectious unit,

• f(N), % of spores dispersed at short range, Aylor (1999),

• Reaction-Diffusion / SEIRT model :

(2) SEIRT ODEs models over rows : production of spores by I and contamination of S by U_1 and U_2

 $\begin{cases} d_t S = \Lambda - (\pi_1 \delta_1 U_1 + \pi_2 \delta_2 U_2) \frac{S}{N} - \frac{1}{m} S \\ d_t E = + (\pi_1 \delta_1 U_1 + \pi_2 \delta_2 U_2) \frac{S}{N} - \frac{1}{p} E \end{cases} \qquad \begin{aligned} \pi_1 \gamma \approx r, \text{ODEs model}, \\ \pi_2 \leq \pi_1, \text{ inoculum eff.} \\ \pi_2 \leq \pi_1, \text{ inoculum eff.} \\ \end{cases} \\ \Rightarrow d_t N = \Lambda = \alpha \left(1 - \frac{N}{K}\right) N. \\ d_t R = + \frac{1}{i} I \\ d_t T = + \frac{1}{m} S \end{cases}$

- Basic model, R-D / SEIRT :
 - R-D system,

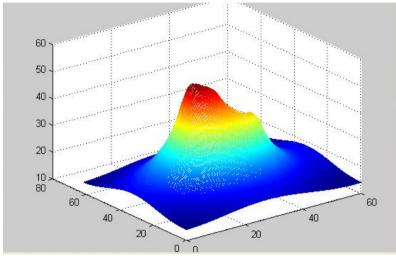
constant diffusivities, no convection term,

kinetic terms : homogeneous / heterogeneous,

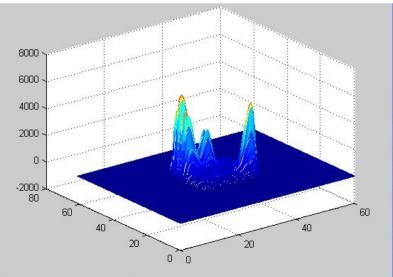
cf. Zawolek & Zadoks (1992), Vanderplank (1963),

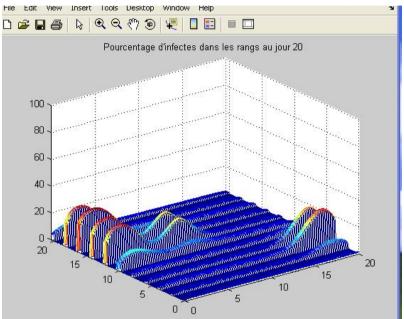
- Boundary conditions ?
 - *homogeneous Dirichlet conditions* set on a much larger domain than the spatial range of interest,
 - Mathematical analysis : IBVP.
 - Numerical experiments (Matlab interface).
 vs
- TW analysis.

Spatially structured Spores : long range dispersal



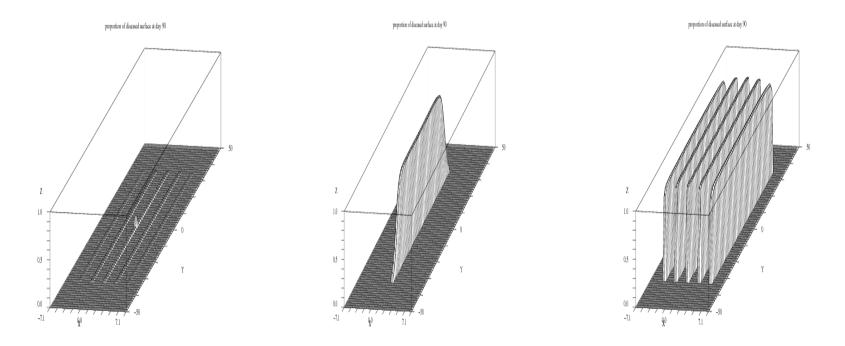
Spores : short range dispersal





Spatial spread of infection

- Proportion of disease lesion / dispersal, Day 90,
 - Long range dispersal only : weak uniform contamination,
 - Short range dispersal only : central row is contaminated,
 - Both : contamination spreads all over the five rows,



- Qualitative analysis :
 - Dimensionless model, R-D / SEIR (no T),

$$\frac{\partial U_1}{\partial t} = \Delta U_1 - \eta U_1 + \eta FI$$

$$\frac{\partial U_2}{\partial t} = d\Delta U_2 - \eta U_2 + \eta (1 - F)I$$

$$\frac{\partial S}{\partial t} = -R_0 (U_1 + U_2) S$$

$$\frac{\partial E}{\partial t} = +R_0 (U_1 + U_2)S - \frac{1}{\tau}E$$

$$\frac{\partial I}{\partial t} = \frac{1}{\tau} E - I$$

- Qualitative analysis (no T) :
 - Wave fronts, φ(x-c.t), 1D, pulses / infection, *linking*,
 - Pre-infection state,

♦ $U_1 = U_2 = 0$, S = K, E = I = R = 0.

• Post-infection state,

♦ $U_1 = U_2 = 0$, $S = K^{infinity}$, E = I = 0, $R = R^{infinity}$.

- When $R_0 > 1$, minimal speed TW, c^* ,
 - implicit closed form (K^{infinity}),
 - $K^{infinity}$ a root of, $h = 1 e^{-R_0 h}$

• The value of c* is given by solving (F<1) the characteristic equation:

Find
$$(\lambda^*, c^*)$$
 such that $0 < \lambda^* < \frac{c + \sqrt{c^2 + 4d\eta}}{2d}$ and $\begin{cases} \psi(\lambda^*, c^*) = 1 \\ \frac{\partial \psi}{\partial \lambda}(\lambda^*, c^*) = 0 \end{cases}$

with

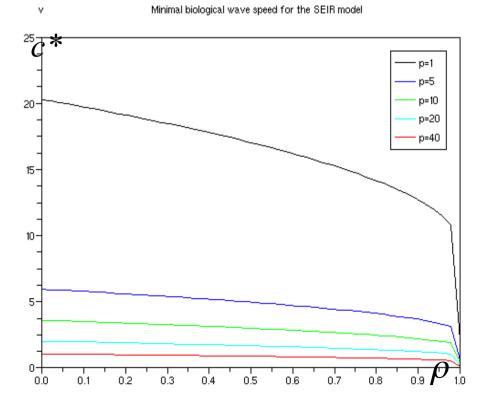
$$\psi_{SEIR}(\lambda,c) = \frac{R_0}{(1+c\lambda)(1+c\tau\lambda)} \left(\frac{\eta F}{\eta+c\lambda-\lambda^2} + \frac{\eta(1-F)}{\eta+c\lambda-d\lambda^2}\right)$$

- Dimensionless minimal speed, c*,
 - Assuming : $\delta_2 = \delta_1$, $\pi_2 = \pi_1$,
 - $F(N)=\rho$, % of short range dispersed spores,

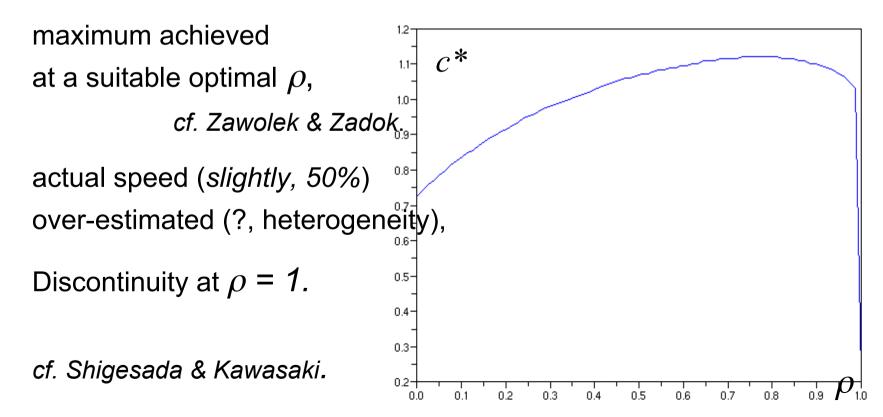
Decreasing w.r.t. ρ .

Discontinuity at ρ = 1.

cf. Shigesada & Kawasaki.



- Dimensionless minimal speed, c*,
 - Assuming : $\delta_2 < \delta_1$, $\pi_2 < \pi_1$,
 - $F(N)=\rho$, % of short range dispersed spores,



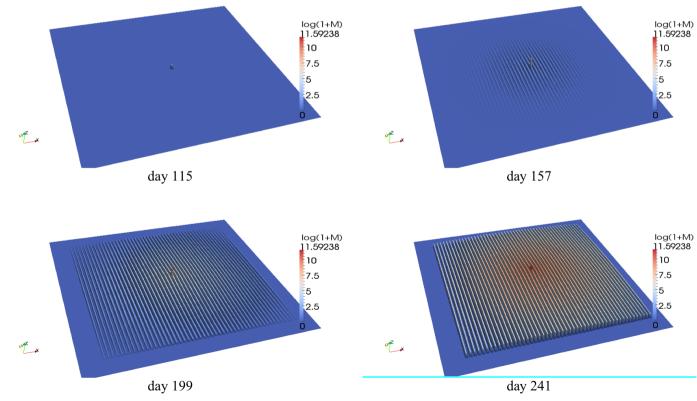
- 2D spatio-temporal periodical WF collaborative work A. Ducrot & H. Matano,
- *in which direction is the speed faster ?* numerics : along rows,

VS

data : across rows, but ...

 Numerical work in progress (turbulence, nonlinear diffusion, architecture & f(N), ...).

- 2D spatio-temporal dynamics,
- Nonlinear short range dispersal, data fitting ?



Further developments ...

- Collecting data and calibrating 2D and 3D models, including transport,
 - no known markers for *Erysiphe necator*, powdery mildew, compared to pollen dispersal,
 - Secondary infections from alien sources ...
- Control problems using fungicides,
 - when ?
 - coupling with shoot topping driving host dynamics ?
 - reducing or delaying the pathogen speed of propagation if coupled to ontogenic resistance ?

- Spatially periodic spatial plot,
 - reference cell, Y, "a single plant" (short range scale),
 - small parameter, $\varepsilon > 0$,
 - spatial domain, Ω ,

a set of cells of size \mathcal{E}^*Y ,

- available vegetal tissue density, function χ , period *Y*, $\chi(x,t,x/\varepsilon)$.
- Simpler to handle as $\varepsilon \rightarrow 0$?
 - spatially periodic: ill-conditioned

Bibliography

- JB. Burie, A. Calonnec, A. Ducrot, Singular Perturbation Analysis of travelling Waves for a Model in Phytopathology, Mathematical Modelling of Natural Phenomena, 1 (2006), 49-63
- JB. Burie, A. Calonnec, M. Langlais. Modeling of the invasion of a fungal disease over a vineyard. Mathematical Modeling of Biological Systems, Volume II. A. Deutsch et al. eds, Birkhäuser Boston (2007), 11-21.
- A. Calonnec, P. Cartolaro, JM. Naulin, D. Bailey, M. Langlais. A host-pathogen simulation model: Powdery Mildew of grapevine. Plant Pathology, 57 (2008), 493-508.
- JB. Burie, A Ducrot. Travelling wave solutions for some models in phytopathology. Nonlinear Analysis Real World Applications 10 (2009), 2307-2325.
- JB. Burie, A. Calonnec, M. Langlais. Effect of Crop Growth and Susceptibility on the Dynamics of a Plant Disease Epidemic: Powdery Mildew of Grapevine. In Li, B., Guo, Y., Jaeger, M. (Eds), PMA 09, Beijing, China. IEEE Computer Society Los Alamitos, (2010), 119-122.
- JB. Burie, M. Langlais, A. Calonnec. Switching from a mechanistic model to a continuous model to study at different scales the effect of vine growth on the dynamic of a powdery mildew epidemic. (2011) Annals of Botany, 885-895.
- JB. Burie, A. Calonnec, M. Langlais, Y. Mammeri. Modeling the spread of a pathogen over a spatially heterogeneous growing crop. PMA 2012 Shangai, China (2012).
- A. Calonnec, J.B. Burie, M. Langlais, S. Guyader, S. Saint-Jean, I. Sache, B. Tivoli. Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. European Journal of Plant Pathology, (2012). DOI : 10.1007/s10658-012-0111-5.
- P. Casadebaig, G. Quesnel, M. Langlais, R. Faivre. A Generic Model to Simulate Air-borne Diseases as a Function of Crop Architecture. Plos ONE, (November 2012). doi:10.1371/journal.pone.0049406.
- JB. Burie, A. Ducrot. A field scale model of fungal disease of crops: the example of powdery mildew epidemics over a vineyard. (2012) manuscript.

Specific fundings

- INRA SPE, post-doc 2002-04,
- Région Aquitaine, doc 2005-2008,
- ARC INRIA, 2009-10, & INRA 2009,
 - Apple scab,
 - Montpellier CIRAD-INRA-INRIA & INRA Clermont et Gautheron,
 - post-doc 01/08 2010, M1 2009 et M2R 2010,
- ANR SYSTERRA ARCHIDEMIO, 2009-12,
 - 3 more patho-systems, Bretagne & Guadeloupe,
 - M1 2009 et M2R 2010, 2011.

