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Host-parasite system  

•  Vitis vinifera, vine stock & plot, 
–  Spatial structures : leaves, plants, plots, no dispersal,  
–  Seasonal variations : growing season, climate (temperature),   
–  Highly anthropized system : wide diversity of cropping systems 

driving host dynamics (secondary shoots / leaves appearance),  
–  No specific resistance of the host.  



•  Erysiphe necator, powdery mildew,    
–  Airborne dispersal of conidia (spores),  
–  Sensitive to the climate : wind speed & direction (?),   
–  Sensitive to the quality of its host : e.g., age of leaves, …  
–  Hard to detect and quantify at the vineyard level,  
–  No reliable prevention tool : routine chemical sprays,  

!  30% world market in fungicides dedicated to vine, (F: 60 M€/year ),    
–  Over-wintering in the bark of vine stocks & within dormant buds,  

•  Vitis vinifera, vine stock & plot, 
–  Spatial structures : leaves, plant, plot scales, no dispersal,  
–  Seasonal variations : growing season, climate (temperature),   
–  Highly anthropized system : wide diversity of cropping systems  

driving host dynamics (secondary shoots / leaves appearance),  
–  No specific resistance of the host.  

Host-parasite system  



Outline : multi-scale problem 
(1)  Architectural discrete 3D plant - pathogen model,  

 discrete w.r.t. time & space, over a single growing season,  
 
 

(2)  Continuous aggregated plant - pathogen model,  
 ODEs SEIRT-like, for a perennial plant,  

 
 

(3)  Spatially structured plot - pathogen model,  
 RD - SEIR(T) like,  

 

€ 

X(n +1) = F(X(n),n,π (n),θ(n)), n ≥ 0.

dtX(t) = F
year (X(t), t,π (t)), t ≥ 0.

€ 

∂tU =∇ ⋅ D(x,N)∇U( ) +V ⋅ ∇U +Gyear(U,x,π (t)), t ≥ 0, x ∈ D.



Discrete 3D  
plant - pathogen scale 

•  Host dynamic: complex 3D architectural model,  
•  Appearance, growth, size, 

age, 3D localization and  
surface area of primary, 
–  Leaves, internodes,  
–  Shoots, grapes,  

•  Climatic scenario,  
–  Daily basis,  

•  Secondary organs,  
•  Anthropization,  

–  Shoot topping,  
!



•  Primary infection :  
–  Calendar date,  
–  3D localization on host, 

•  Lesion growth,  
–  Latency period,  
–  Spore production period,  
–  Spore release,  

•  Within vine stock spore 
dispersal,  
–  Speed of wind (daily),  

•  Secondary infections, 

Discrete 3D  
plant - pathogen scale 

•  Coupled host-pathogen dynamic : complex 3D 
architectural model,  

Field data,  
INRA Cabernet Sauvignon, 
Digitalization of vine stocks,  



•  Plant / pathogen dynamics for a growing season,   
  complex 3D model, more than 30 parameters …   

€ 

X(n +1) = F(X(n),n,π (n),θ(n)), n ≥ 0.

Discrete 3D  
plant - pathogen scale 



•  Scenario 1998, inoculation day : 115 vs 131,  

Discrete 3D  
plant - pathogen scale 

Fig. 2 Calonnec et al.
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•  PCA PLS analysis, Climatic scenarios and crop 
management do not impact the same variables,  

–  Year (climate) is better correlated to early disease,  
–  Crop management is more correlated to later disease,  

•  Sensitivity and elasticity analysis,    
–  Age of leaves : susceptibility, ontogenic resistance,  
–  Vigour of the host,  
–  Sporulation,  
–  Inoculation date,  
–  Temperature, dominant wind, …   
 

•  Qualitative analysis ?    

Discrete 3D  
plant - pathogen scale 



•  SEIRT compartmental model w.r.t. leaf surface area,  

–  incidence : r×S×I/N, Vanderplank, etc.  

Continuous aggregated  
plant - pathogen “minimal” model 
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•  SEIRT model :  Susceptible, Exposed, 
Infectious, Retired,T (ontogenic resistance),  

–  Find a set of parameters (r,α,K) yielding consistent 
dynamics w.r.t. the discrete model ?   

Continuous aggregated  
plant - pathogen “minimal” model 



•  « Aggregated » ODEs model fitted with discrete model,  

–  Good fitting to aggregate time-dependent processes provided,    
  ≠ sets of parameters (r,α,K) at shoot topping,  

–  LSM : total leaf / diseased surface area,  

–  Problem at shoot topping : status of remaining leaves ?    
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Continuous aggregated  
plant - pathogen “minimal” model 



•  « Aggregated » ODEs model fitted with discrete model,  

–  Good fitting to aggregate time-dependent processes provided,    
  ≠ sets of parameters (r,α,K) at shoot topping,  

–  LSM : total leaf / diseased surface area,  

–  Problem at shoot topping : status of remaining leaves ?    
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Continuous aggregated  
plant - pathogen “minimal” model 



•  Qualitative analysis wrt standard epidemiology,  
–  Computing the reproductive number R0,  R0 = r×i,  

 

–  Computing the effective reproductive number Reffective,  

!  Reffective = r i S(t)/N(t),   

!  t → Reffective (t) « decreasing outside shoot-topping » ?   

Continuous aggregated  
plant - pathogen “minimal” model 



•  Qualitative analysis wrt standard epidemiology,  
–  Computing the reproductive number R0,  R0 = r*i,  

 

–  Computing the effective reproductive number Reffective,  

!  Reffective = r i S(t)/N(t),   

!  t → Reffective (t) « decreasing outside shoot-topping » ?   
 

–  Computing the asymptotic state in closed form (+∞ = winter) ?  

!  without ontogenic resistance (1/m = 0 or T = 0),  

 S = Sinfinity, E = I = 0, R = Rinfinity.  

!  with ontogenic resistance,  

 S = 0, E = I = 0, R = Rinfinity, T = Tinfinity.  

Continuous aggregated  
plant - pathogen “minimal” model 



Field data (1999), INRA Bordeaux 

•  Experimental plot with 5 rows & 66 vine stocks 
per row,   

Field data (1999), INRA Bordeaux

• Experimental plot with 5 rows & 66 vine stocks
per row,



Pathogen dispersal :  
conceptual analysis.  

 
Long and short distance dispersal,  

 type 1 : short alone,  
 type 2 : both (coalescence),  
 type 3 : (scaling effect)  
  reduced short / large long.  

 
  Shigesada, N., Kawasaki. K. 

Spatially structured  
plot - pathogen model 



T 

1/m 

Susceptibility  
period 

Short range dispersal :  
deposition rate of spores 

Long range dispersal :  
deposition rate of spores 

U1 

U2 

Spatially structured  
plot - pathogen model 
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•  SEIRT compartmental model over rows,  

Host growth 



•  Reaction-Diffusion / SEIRT model :  

(1) Reaction-Diffusion system for dispersal of spores,  

!  U1 & U2, short (plant scale) and long range dispersed spores,  
-  Fick's law diffusion, 0 < d1(x,N) ≤ d2 (x,N),  
-  Convection term V(x,t), for average vs strong winds (?),  

!  δi, deposition rate of spores Ui, i=1,2, δ2 ≤ δ1, 

!  γ, production rate of spores per infectious unit,  

!  f (N), % of spores dispersed at short range, Aylor (1999),  

€ 

∂tU1 =∇ ⋅ (d1(x,N)∇U1) −δ1U1 + γ f (N)I,

∂tU2 =∇ ⋅ (d2(x,N)∇U2) −V (x,t) ⋅ ∇U2 −δ2U2 + γ (1− f (N))I.
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Spatially structured  
plot - pathogen model 



•  Reaction-Diffusion / SEIRT model :  
(2) SEIRT ODEs models over rows : production of  

spores by I and contamination of S by U1 and U2 
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π1γ ≈ r, ODEs model,

π 2≤ π1,  inoculum eff.

Spatially structured  
plot - pathogen model 



•  Basic model, R-D / SEIRT :  
–  R-D system,  
  

!  constant diffusivities, no convection term,  

!  kinetic terms : homogeneous / heterogeneous,  

!  cf. Zawolek & Zadoks (1992), Vanderplank (1963),  

–  Boundary conditions ?  
•  homogeneous Dirichlet conditions set on a much larger 

domain than the spatial range of interest,  
•  Mathematical analysis : IBVP.   
•  Numerical experiments (Matlab interface).   
vs 

–   TW analysis.  

Spatially structured  
plot - pathogen model (a) 



Spores : long range dispersal 

Spores : short range dispersal 

Spatial spread of infection  

Spatially structured  
plot - pathogen model (a) 



•  Proportion of disease lesion / dispersal, Day 90,  
–  Long range dispersal only : weak uniform contamination,  
–  Short range dispersal only : central row is contaminated,  
–  Both : contamination spreads all over the five rows,  

Spatially structured  
plot - pathogen model (a) 



•  Qualitative analysis :  
– Dimensionless model, R-D / SEIR (no T),  

Spatially structured  
plot - pathogen model (b) 
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•  Qualitative analysis (no T)  :  
–  Wave fronts, φ(x-c.t), 1D, pulses / infection, 

linking,  
  

•  Pre-infection state,  

!  U1 = U2 = 0, S = K, E = I = R = 0.  

•  Post-infection state,  

!  U1 = U2 = 0, S = Kinfinity, E = I = 0, R = Rinfinity.  

–  When R0 > 1, minimal speed TW, c*,  
 

•  implicit closed form (Kinfinity),  

•  Kinfinity a root of,       

Spatially structured  
plot - pathogen model (b) 
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•  The value of c* is given by solving (F<1) the 
characteristic equation: 
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Spatially structured  
plot - pathogen model (b) 



•  Dimensionless minimal speed, c*,  
–  Assuming : δ2 =δ1 , π2 = π1 , 

–  F(N)=ρ, % of short range dispersed spores,  
 

 
Decreasing w.r.t.  ρ.  
 

Discontinuity at ρ = 1.  
 
cf. Shigesada & Kawasaki.  

ρ 

Spatially structured  
plot - pathogen model (b) 

c* 



•  Dimensionless minimal speed, c*,  
–  Assuming : δ2 <δ1 , π2 < π1 , 

–  F(N)=ρ, % of short range dispersed spores,  

maximum achieved  
at a suitable optimal ρ,  

   cf. Zawolek & Zadok.  
 

actual speed (slightly, 50%) 
over-estimated (?, heterogeneity),  
 

Discontinuity at ρ = 1.  
 
cf. Shigesada & Kawasaki.  

c* 

ρ 

Spatially structured  
plot - pathogen model (b) 



•  2D spatio-temporal periodical WF collaborative 
work A. Ducrot & H. Matano,  

•  in which direction is the speed faster ?  
  numerics : along rows,  
 vs  
  data : across rows, but …  

– Numerical work in progress (turbulence, 
nonlinear diffusion, architecture & f(N), … ).  

Spatially structured  
plot - pathogen model (b) 



•  2D spatio-temporal dynamics, 
•  Nonlinear short range dispersal, data 

fitting ?  

Spatially structured  
plot - pathogen model (b) 



•  Collecting data and calibrating 2D and 3D 
models, including transport,  
–  no known markers for Erysiphe necator, powdery 

mildew, compared to pollen dispersal,  
–  Secondary infections from alien sources ...  

•  Control problems using fungicides,  
–  when ?  
–  coupling with shoot topping driving host dynamics ?  
–  reducing or delaying the pathogen speed of 

propagation if coupled to ontogenic resistance ?  

Further developments …  



•  Spatially periodic spatial plot,  

–  reference cell, Y, “a single plant”, 
  (short range scale),   

–  small parameter, ε > 0,  
–  spatial domain, Ω,  

  a set of cells of size ε*Y,  
–  available vegetal tissue density, function χ, period Y, 

   χ(x,t,x/ε).  
•  Simpler to handle as ε → 0 ?   

–  spatially periodic: ill-conditioned,  

Spatially structured  
plot - pathogen model (c) 
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