Counterintuitive patterns of dispersal evolution in a simple trophic metacommunity

> Pradeep Pillai, Marine Science Center, Northeastern University

Everything Disperses to Miami, University of Miami Coral Gables Dec. 14-16, 2012

Evolution of dispersal in metapopulation

- Ecologically: Dispersal important for maintaining a species in a spatially subdivided population.
- Evolutionarily: Dispersal comes at a cost of decreasing local fitness.

Evolution of dispersal in a metacommunity

- What selection pressures exist on species dispersal rates at the metacommunity level?
- Dispersal repeatedly shown to increase with local extinction rate in metapopulations
 - Van Valen (1971), Levin and Olivieri (1984), Comins et al. (1981), Olivieri et al. (1995)

Evolution of dispersal Research Question

 Want to measure how evolutionary stable (ESS) dispersal will change with increasing extinction rates caused by unstable interaction between a prey and predator

• Eg. Huffaker, 1958

T. occidantelis

E. sexmaculatus

Huffaker, 1958 0

Evolution of dispersal
 Metacommunity framework for studying dispersal evolution

 Use a patch-dynamic metacommunity approach to model spatially structured populations of interacting predator and prey species.

Evolution of dispersal Predator-prey metacommunity dynamics

Evolution of dispersal Predator-prey metacommunity dynamics

Predator-prey metacommunity

$$\frac{dR}{dt} = c_R R(h-R) - e_R R - \mu P \qquad (prey)$$
$$\frac{dP}{dt} = c_P P(R-P) - e_P P - (e_R + \mu) P \qquad (predator)$$

Evolution of dispersal Model framework and assumptions

- Model based on Jansen and Vitalis (2007)
- Increased dispersal between patches comes at cost of decreasing local fitness
- Need to have a link between local within-patch dynamics (i.e., fitness) and regional metacommunity-level processes (colonization-extinction)

Evolution of dispersal Model framework and assumptions

Regional metacommunity scale

scale

$$\frac{dR}{dt} = c_R R(h-R) - e_R R - \mu P \qquad (prey)$$

$$\frac{dP}{dt} = c_P P(R - P) - e_P P - (e_R + \mu)P \quad \text{(predator)}$$

 $\dot{x} = rx\left(1 - \frac{x}{K}\right) - \gamma_x x - axy$ (prey equation)

Local within-patch

 $\dot{y} = aqxy - \gamma_y y - my$

(predator equation)

Evolution of dispersal Local (within-patch) dynamics

$$\dot{x} = rx\left(1 - \frac{x}{K}\right) - \gamma_x x - axy$$

(prey equation)

 $\dot{y} = aqxy - \gamma_y y - my$

(predator equation)

Evolution of dispersal Local (within-patch) dynamics

$$\dot{x} = rx\left(1 - \frac{x}{K}\right) - \gamma_x x - axy$$
$$\dot{y} = aqxy - \gamma_y y - my$$

(prey equation)

(predator equation)

(local prey density without predator)

$$\begin{split} \tilde{x}_P &= \frac{\left(m + \gamma_y\right)}{aq}, \\ \tilde{y} &= \frac{r}{a} \left(1 - \frac{m + \gamma_y}{aqK}\right) - \frac{\gamma_x}{a}, \end{split}$$

 $\tilde{x}_0 = \frac{K}{r} (r - \gamma_x)$

(local prey density with predator)

(local predator density)

Evolution of dispersal Model framework and assumptions

$$\frac{dR}{dt} = c_R R(h-R) - e_R R - \mu P \qquad (prey)$$

Regional *dt* metacommunity scale *dP*

$$\frac{dP}{dt} = c_P P(R - P) - e_P P - (e_R + \mu)P \qquad \text{(predator)}$$

When metacommunity is at equilibrium

$$\tilde{R} = \frac{1}{2} \left[1 - \left(\frac{e_R + \mu}{c_{R_P}} \right) + \Gamma \right] + \frac{1}{2} \sqrt{\left[1 - \left(\frac{e_R + \mu}{c_{R_P}} \right) + \Gamma \right]^2 + 4 \left(\frac{\mu - \Delta c_R}{c_{R_P} c_P} \right) (e_P + e_R + \mu)},$$

$$\tilde{P} = \tilde{R} - \frac{(e_{\rm P} + e_{\rm R} + \mu)}{c_{\rm P}}$$

Evolution of dispersal Scaling up from local (within-patch) dynamics to regional metacommunity dynamics

 Outilize this framework to study evolution of dispersal, γ, in a metacommunity.

• Follow the fate of a single single mutant invasive individual, with dispersal strategy γ_{mutant} , invading a metacommunity with a resident prey with dispersal rate, $\gamma_{resident}$, while both resident predator, *P*, and prey, *R*, patch-occupancies are at equilibrium.

- Measure the total lifetime reproductive output of the focal invasive after it has landed in a patch, before going extinct, or being competitively displaced.
- Use $R_{\rm M}$ as a measure of fitness (Metz and Gyllenberg, 2001; similar to R_0).

Fitness of single mutant invasive prey

W =

Fitness of single mutant invasive prey

State transition diagram for an invasive prey patch prior to extinction or reinvasion by a resident

 Involves measuring the output of a mixed strategy patch (when both resident and invasive strategy are present).

State transition diagram for an mixed-strategy prey patch prior to extinction

Fitness of single mutant invasive prey

W =

Fitness of single mutant invasive prey

Fitness of single mutant invasive prey

Evolution of dispersal Gradient of selection and evolutionarily singular strategy

Evolution of dispersal Condition ESS and CSS

If
$$\frac{dG}{d\gamma} < 0$$

 $\gamma = \gamma^{*}$
If $\frac{\partial^{2}W}{\partial \gamma_{m}^{2}} < 0$
 $\gamma_{mutant} = \gamma_{resident}$

 γ^* is an evolutionary attractor

 γ^* is ESS stable

(**not** a potential evolutionary branching point)

If both of the above, then Continuously Stable Strategy

Evolution of dispersal Research Question

 Want to measure how evolutionary stable (ESS) dispersal will change with increasing extinction rates caused by unstable interaction with predator

Evolution of dispersal Results: <u>predator</u> ESS dispersal with increasing top-down extinction

Pillai, Gonzalez and Loreau American Naturalist, 2012

Evolution of dispersal Results: <u>prey</u> ESS dispersal with increasing top-down extinction

Pillai, Gonzalez and Loreau American Naturalist, 2012

Evolution of dispersal Results: <u>prey</u> ESS dispersal with increasing top-down extinction

Evolution of dispersal Results: prey ESS dispersal with increasing top-down extinction

5

Top-down extinction rate

Evolution of dispersal Results: prey ESS dispersal with increasing top-down extinction

Evolution of dispersal Results: prey ESS dispersal with increasing top-down extinction

For very low z_x values.

Evolution of dispersal Results: Coevolution of a predator and prey

Joint evolutionary stable strategy for coevolved predator and prey

Evolution of dispersal Summary of results

- Extinctions are caused by interspecific (trophic) interactions
- Feedback between local and metacommunity scale processes: predator-prey interactions play out differently at local and regional scales

Evolution of dispersal Conclusions and Summary

- Some patterns and processes are emergent at the metacommunity scale
- Non-monotonic dispersal is an emergent property at the scale of the metacommunity arising from contradiction between local and metacommunity scale selection processes

Acknowledgements

- Thanks to Andrew Gonzalez (McGill University) and Michel Loreau (Station d'Ecologie Expérimentale du CNRS à Moulis, France)
- Research funded by an FQRNT (Fonds québécois de la recherche sur la nature et les technologies) team grant