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Range expansion phenomenon

Growing number of observations of range expansions mainly because of
» climate changes (climatic niches shifting);
» biological invasions;

> human activities (transportation of species).

Range expansion is the result of

» Dispersal
e Local diffusion: movement into adjacent habitat;
e Non-local dispersion: long distance dispersal.

» Population growth

e Logistic growth: competition (for food and space) leads to negative
density dependence.
o Allee effect: lower fertility at low density (Allee 1932).
Examples: mate limitation, consanguinity, cooperative defense or feeding,...

— Important issue: the speed of range expansion.



Reid’'s paradox of rapid plant migration

(Reid, 1899): Recolonization from Southern refugia at the end of the last
glacial period (~ 10000 years ago).

Current distribution of oak in Europe cannot be explained by diffusive
dispersal.

= . Primary refugium
(pollen evidence)

O Primary refugium

(no pollen evidence)

b

' O Secondary refugium

o
@, 8
EAA) mmmntn RN

_ o W8 (Petit et al., 2002)

— recolonization was faster than expected



Fast propagation in reaction-dispersion equations

- Existence of cryptic refugia accelerate propagation. (Mc Lachlan et al.
2005, Provan and Bennett 2008)

(Hamel and Roques 2010, Roques et al. 2011) : solutions of RD equations
with EU initial data accelerate.
- Long distance dispersal events increase the dispersal capability.
(Skellam 1951, Clark et al., 1998)
Models: Integro-differential equations:
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Numerical observations and formal computations: Infinite asymptotic
spreading speed and accelerating rate of spread if the dispersal kernel J is
“fat-tailed” (Mollison 1977, Kot et al. 1996, Medlock and Kot 2003).

— How does the dispersal mode impact the spreading speed?



Integro-differential model, basic assumptions

%(t,x} = /RJ(X —y)(u(t,y) —u(t,x))dy + f(u(t, x))

Dispersal term Growth term

Initial condition wug :

o : R — [0,1] is C° function, compactly supported and ug % 0.

Monostable term f:

f(0) = f(1) =0, f(s) > 0 for all s € (0,1), and f'(0) > 0.

Logistic growth — KPP case
0< f(u) <f'(0)u

Weak Allee case
f(u)/u not maximal at 0.

1 4 f(u)




Integro-differential model, basic assumptions

/RJ(X —y)(u(t,y) — u(t,x))dy + f(u(t, x))

Dispersal term Growth term
Initial condition wug :
o : R — [0,1] is C° function, compactly supported and ug % 0.
Monostable term 7:

f(0)=f(1)=0, f(s) >0 forall s € (0,1), and '(0) > 0.

Dispersal kernel J: J(x — y) the probability distribution of jumping from
location y to location x.

Jec® J>0, J(x /J—land/|x|J Ydx < oo.



Dispersal kernel assumptions

Exponentially bounded kernel (EB)
(Diekmann 1979, Thieme 1979, Schu-
macher 1980, Weinberger 1982, Coville
et al. 2008)

Definition
Ja > 0 s.t. J satisfies

0<J(x) < efo“x‘, for large x.

Exponentially unbounded kernel (EU)
(Medlock and Kot 2003, Yagisita 2009)

Definition
J satisfies

J'(x)/J(x) = 0 as |x| = +oo.

= J(x)e*™ = oo as x| = 400
for all a > 0.




Exponentially bounded kernel: classical results

(Schumacher, 1980; Coville et Dupaigne, 2007): existence of traveling
wave solutions u(t,x) = U(x — ct) for speed ¢ > c* > 0;

/J x— —U()dy + cU'(y) + F(U(y)) =0, inR

U(=o0) =1 and U(+00) =0 and U’ <0inR.
U(x — ct)

C
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Exponentially bounded kernel: classical results
The spreading speed ¢ of a solution u of IDE is defined by:

I|msup u(t,|x] —wt)=0ifw>c

I|m|nfu(t x| —wt)=1if0<w<c

(Lutcsher et al., 2005): if ug is compactly supported, the spreading speed
¢ of u satisfies ¢ = c*, the minimal speed of traveling fronts.

— spreading speed remains finite.
Numerical obs: the solution converges to a traveling front with constant profile.
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EU kernel: infinite spreading speed

Hypothesis: Exponentially unbounded kernel

J(x) is decreasing for all x >0, J is a C* function for large x and
J'(x)
J(x)

Theorem 1 (Garnier, 2011)

— 0 as |x| = +oc.

If the kernel J is EU, the asymptotic spreading speed of u(t, x) is infinite.



EU kernel: Level sets E\(t)

For all A € (0,1), we define the level set Ex(t) by:

Ex(t) :=={x € R, u(t,x) = A},

lim = |lim —=% = +o0.
t—-+o00 t t——+o00 t



EU kernel: Lower and Upper bounds of E)(t)

We get bounds for the position of the level sets, which explicitly depend
on the dispersal kernel J and the reaction term f.

Theorem 2 (Garnier, 2011)

Let J be EU. Then there exists p > f'(0) such that for any A € (0,1),
and £ > 0, every element x\(t) € Ex(t) verifies:

J! (e_(f/(o)_s)t) < a(t) <7 (e?) for large t.

Two additional hypotheses for the upper bound:

Hyp. 1 Hyp. 2
There exists vy € (0,1) such that | or | There exists C > 0, such that
!
1
/J(z)”"dz < 0. L) ~ C— as |x| = oo.
R J(x) x|




EU kernel: some examples

Kernel J satisfying Hyp. 1 but not Hyp. 2:

» Jis logarithmically power-like and sub-linear as |x| — oo,

J(x) = Ce= VI for large |x|, « >0, C > 0.

— every x)(t) € Ex(t) satisfies for any ¢ > 0

t? for large t;




EU kernel: some examples

Kernel J satisfying Hyp. 2:

» J decays algebraically as |x| — oo,
J(x) = Clx|™* for large |x|, « > 2, C >0,

— every x)(t) propagates exponentially fast as t — 400, for any
e>0
fl(0)—e

e o < |x(t)] < eft for large t,

(Cabré and Roquejoffre 2009): Similar results with fractional Laplacian diffusion:
Ca
Du(t, x) :/}Rm(u(t,y) — u(t.x))dy + F(u(t.x))

Let « € (0,1) and set c* = f'(0)/(1 + 2a), then

lim inf u(t,x)=1ifc<c*

Jim | inf, lim sup u(t,x)=0if c > c*.
— 100 |x|<Lec

t—+o0 |x|>ect




EU kernel: qualitative results

Global behavior of the solution u(t, x) :

» The rate of spread increases in time like J~(e™7%)/t.
— acceleration of the propagation and infinite asymptotic spreading
speed,
» The profile of the front tends to flatten with time.
— no convergence to traveling wave solution ( Yagisita, 2009);
— the leading edge of the population spreads faster.
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Conclusions

Real dichotomy

Exponentially Unbounded kernels:
» Infinite asymptotic spreading speed;
» The positions of the level sets accelerate with time faster than
J7H e )
» EU kernels = fat tailed kernels.
Exponentially Bounded kernels and RD equations:
» Finite spreading speed;
> The solution converges to a traveling front with constant profile;
» EB kernels = thin tailed kernels.

Taking Long Distance Dispersal events into account is of critical importance.



Conclusions

Thank you for your attention
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