Conclusions

Long distance dispersal events accelerate range expansions

Jimmy GARNIER

Aix-Marseille University, France Biostatistics and Spatial Processes, INRA Avignon, France Mark Lewis Research Group, University of Alberta, Canada

(日)

Everything Disperses to Miami, Non-local dispersal in ecology and epidemiology, 14/12/12

Range expansion phenomenon

Growing number of observations of range expansions mainly because of

- climate changes (climatic niches shifting);
- biological invasions;
- human activities (transportation of species).

Range expansion is the result of

- Dispersal
 - Local diffusion: movement into adjacent habitat;
 - Non-local dispersion: long distance dispersal.

Population growth

- Logistic growth: competition (for food and space) leads to negative density dependence.
- Allee effect: lower fertility at low density (Allee 1932).
 Examples: mate limitation, consanguinity, cooperative defense or feeding,...
- \rightarrow Important issue: the speed of range expansion.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Reid's paradox of rapid plant migration

(*Reid*, 1899): Recolonization from Southern refugia at the end of the last glacial period (\sim 10 000 years ago).

Current distribution of oak in Europe cannot be explained by diffusive dispersal.

 \rightarrow recolonization was faster than expected

Fast propagation in reaction-dispersion equations

- Existence of **cryptic refugia** accelerate propagation. (*Mc Lachlan et al. 2005, Provan and Bennett 2008*)

(*Hamel and Roques 2010, Roques et al. 2011*) : solutions of RD equations with *EU initial data* accelerate.

- Long distance dispersal events increase the dispersal capability. (*Skellam 1951, Clark et al., 1998*)

Models: Integro-differential equations:

$$\frac{\partial u}{\partial t}(t,x) = \int_{-\infty}^{+\infty} J(|x-y|) (u(t,y) - u(t,x)) dy + f(u(t,x))$$

Numerical observations and formal computations: Infinite asymptotic spreading speed and accelerating rate of spread if the dispersal kernel *J* is "fat-tailed" (*Mollison 1977, Kot et al. 1996, Medlock and Kot 2003*).

 \rightarrow How does the dispersal mode impact the spreading speed?

Integro-differential model, basic assumptions

$$\frac{\partial u}{\partial t}(t,x) = \int_{\mathbb{R}} J(x-y) (u(t,y) - u(t,x)) dy + f(u(t,x))$$

Dispersal term Growth term

Initial condition u_0 :

 $u_0: \mathbb{R} \to [0,1]$ is \mathcal{C}^0 function, compactly supported and $u_0 \not\equiv 0$. Monostable term f:

$$f(0) = f(1) = 0, \ f(s) > 0 \text{ for all } s \in (0, 1), \text{ and } f'(0) > 0.$$
Logistic growth - KPP case
$$0 < f(u) \le f'(0)u$$

$$f(u) + y = f'(0)u$$

$$f(u) + y = f'(0)u$$

$$1 + f(u) + y = f'(0)u$$

Integro-differential model, basic assumptions

$$\frac{\partial u}{\partial t}(t,x) = \int_{\mathbb{R}} J(x-y) (u(t,y) - u(t,x)) dy + f(u(t,x))$$

Dispersal term Growth term

Initial condition u_0 :

 $u_0:\mathbb{R} o [0,1]$ is \mathcal{C}^0 function, compactly supported and $u_0
ot\equiv 0.$ Monostable term f:

$$f(0) = f(1) = 0, \ f(s) > 0 \text{ for all } s \in (0,1), \text{ and } f'(0) > 0.$$

Dispersal kernel J: J(x - y) the probability distribution of jumping from location y to location x.

$$J \in \mathcal{C}^0, \ J \ge 0, \ J(x) = J(-x), \ \int_{\mathbb{R}} J = 1 \text{ and } \int_{\mathbb{R}} |x| J(x) dx < \infty.$$

Exponentially bounded kernel: classical results

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

$$\int_{\mathbb{R}} J(x-y)(U(y) - U(x))dy + cU'(y) + f(U(y)) = 0, \text{ in } \mathbb{R}$$

$$U(-\infty) = 1 \text{ and } U(+\infty) = 0 \text{ and } U' < 0 \text{ in } \mathbb{R}.$$

$$U(x - ct)$$

Exponentially bounded kernel: classical results

The spreading speed c of a solution u of IDE is defined by:

$$\limsup_{\substack{t \to \infty \\ t \to \infty}} u(t, |x| - wt) = 0 \text{ if } w > c$$

(Lutcsher et al., 2005): if u_0 is compactly supported, the spreading speed c of u satisfies $c = c^*$, the minimal speed of traveling fronts.

 \rightarrow spreading speed remains finite.

Numerical obs: the solution converges to a traveling front with constant profile.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EU kernel: infinite spreading speed

Hypothesis: Exponentially unbounded kernel

J(x) is decreasing for all $x \ge 0$, J is a C^1 function for large x and

$$rac{J'(x)}{J(x)} o 0$$
 as $|x| o +\infty.$

Theorem 1 (Garnier, 2011)

If the kernel J is EU, the asymptotic spreading speed of u(t, x) is infinite.

EU kernel: Level sets $E_{\lambda}(t)$

For all $\lambda \in (0,1)$, we define the level set $E_{\lambda}(t)$ by:

$$E_{\lambda}(t) := \{x \in \mathbb{R}, u(t,x) = \lambda\},\$$

From Theorem 1, for all $\lambda \in (0, 1)$,

$$\lim_{t\to+\infty}\frac{|x_{\lambda}^{1}(t)|}{t}=\lim_{t\to+\infty}\frac{|x_{\lambda}^{2}(t)|}{t}=+\infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

EU kernel: Lower and Upper bounds of $E_{\lambda}(t)$

We get bounds for the position of the level sets, which explicitly depend on the dispersal kernel J and the reaction term f.

Theorem 2 (Garnier, 2011)

Let J be EU. Then there exists $\rho \ge f'(0)$ such that for any $\lambda \in (0,1)$, and $\varepsilon > 0$, every element $x_{\lambda}(t) \in E_{\lambda}(t)$ verifies:

$$J^{-1}\left(e^{-(f'(0)-\varepsilon)t}
ight)\leq |x_{\lambda}(t)|\leq J^{-1}\left(e^{-
ho t}
ight) ext{ for large }t.$$

Two additional hypotheses for the upper bound:

EU kernel: some examples

Kernel J satisfying Hyp. 1 but not Hyp. 2:

▶ *J* is logarithmically power-like and sub-linear as $|x| \rightarrow \infty$,

$$J(x)=Ce^{-lpha\sqrt{|x|}}$$
 for large $|x|,\,\,lpha>0,\,\,C>0.$

ightarrow every $x_\lambda(t)\in E_\lambda(t)$ satisfies for any arepsilon>0

EU kernel: some examples

Kernel J satisfying Hyp. 2:

• J decays algebraically as $|x| \to \infty$,

$$J(x) = C|x|^{-\alpha}$$
 for large $|x|, \ \alpha > 2, \ C > 0,$

 $\begin{array}{l} \rightarrow \text{ every } x_{\lambda}(t) \text{ propagates exponentially fast as } t \rightarrow +\infty, \text{ for any } \\ \varepsilon > 0 \\ e^{\frac{f'(0)-\varepsilon}{\alpha}t} \leq |x_{\lambda}(t)| \leq e^{\frac{\tilde{\rho}}{\alpha}t} \text{ for large } t, \end{array}$

(Cabré and Roquejoffre 2009): Similar results with fractional Laplacian diffusion:

$$\partial_t u(t,x) = \int_{\mathbb{R}} \frac{c_\alpha}{|x-y|^{1+2\alpha}} \big(u(t,y) - u(t,x) \big) dy + f(u(t,x))$$

Let $\alpha \in (0,1)$ and set $c^* = f'(0)/(1+2\alpha)$, then

$$\lim_{t \to +\infty} \inf_{|x| \leq e^{ct}} u(t,x) = 1 \text{ if } c < c^* \quad \left| \lim_{t \to +\infty} \sup_{|x| \geq e^{ct}} u(t,x) = 0 \text{ if } c > c^*. \right|$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

EU kernel: qualitative results

Global behavior of the solution u(t, x):

The rate of spread increases in time like J⁻¹(e^{-γt})/t. → acceleration of the propagation and infinite asymptotic spreading speed,

The profile of the front tends to flatten with time.
 → no convergence to traveling wave solution (*Yagisita, 2009*);
 → the leading edge of the population spreads faster.

Conclusions

Real dichotomy

Exponentially Unbounded kernels:

- Infinite asymptotic spreading speed;
- The positions of the level sets accelerate with time faster than J⁻¹(e^{-γt});
- EU kernels = fat tailed kernels.

Exponentially Bounded kernels and RD equations:

- Finite spreading speed;
- The solution converges to a traveling front with constant profile;
- EB kernels = thin tailed kernels.

Taking Long Distance Dispersal events into account is of critical importance.

Conclusions

Thank you for your attention

References

- J Garnier. Accelerating solutions in integro-differential equations, *SIAM J. Math. Anal.*, 43(4): 1955–1974, 2011;
- J Medlock and M Kot. Spreading disease: Integro-differential equations old and new, *Math. Biosci.*, 184(2):201–222, 2003;
- M Kot, M Lewis and P Van den Driessche. Dispersal data and the spread of invading organisms, *Ecology*, 77:2027–2042, 1996;
- F Hamel and L Roques. Fast propagation for KPP equations with slowly decaying initial conditions. *J. Diff. Equations*, 249:1726–1745, 2010;
- X Cabré and J-M Roquejoffre. The influence of fractional diffusion on Fisher-KPP equations, *Comm. Math. Phys.* forthcoming.