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Range expansion phenomenon

Growing number of observations of range expansions mainly because of

◮ climate changes (climatic niches shifting);

◮ biological invasions;

◮ human activities (transportation of species).

Range expansion is the result of

◮ Dispersal

• Local diffusion: movement into adjacent habitat;
• Non-local dispersion: long distance dispersal.

◮ Population growth

• Logistic growth: competition (for food and space) leads to negative
density dependence.

• Allee effect: lower fertility at low density (Allee 1932).
Examples: mate limitation, consanguinity, cooperative defense or feeding,...

→ Important issue: the speed of range expansion.
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Reid’s paradox of rapid plant migration

(Reid, 1899): Recolonization from Southern refugia at the end of the last
glacial period (∼ 10 000 years ago).
Current distribution of oak in Europe cannot be explained by diffusive
dispersal.

(Petit et al., 2002)

→ recolonization was faster than expected
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Fast propagation in reaction-dispersion equations

- Existence of cryptic refugia accelerate propagation. (Mc Lachlan et al.

2005, Provan and Bennett 2008)

(Hamel and Roques 2010, Roques et al. 2011) : solutions of RD equations
with EU initial data accelerate.

- Long distance dispersal events increase the dispersal capability.
(Skellam 1951, Clark et al., 1998)

Models: Integro-differential equations:

∂u

∂t
(t, x) =

∫ +∞

−∞

J(|x − y |)
(

u(t, y) − u(t, x)
)

dy + f
(

u(t, x)
)

Numerical observations and formal computations: Infinite asymptotic
spreading speed and accelerating rate of spread if the dispersal kernel J is
“fat-tailed” (Mollison 1977, Kot et al. 1996, Medlock and Kot 2003).

→ How does the dispersal mode impact the spreading speed?
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Integro-differential model, basic assumptions

∂u

∂t
(t, x) =

∫

R

J(x − y)
(

u(t, y) − u(t, x)
)

dy + f
(

u(t, x)
)

Dispersal term Growth term

Initial condition u0 :

u0 : R → [0, 1] is C0 function, compactly supported and u0 6≡ 0.

Monostable term f :

f (0) = f (1) = 0, f (s) > 0 for all s ∈ (0, 1), and f ′(0) > 0.

Logistic growth – KPP case Weak Allee case

0 < f (u) ≤ f ′(0)u f (u)/u not maximal at 0.
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Integro-differential model, basic assumptions
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∂t
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∫

R

J(x − y)
(

u(t, y) − u(t, x)
)

dy + f
(

u(t, x)
)

Dispersal term Growth term

Initial condition u0 :

u0 : R → [0, 1] is C0 function, compactly supported and u0 6≡ 0.

Monostable term f :

f (0) = f (1) = 0, f (s) > 0 for all s ∈ (0, 1), and f ′(0) > 0.

Dispersal kernel J : J(x − y) the probability distribution of jumping from
location y to location x .

J ∈ C0, J ≥ 0, J(x) = J(−x),

∫

R

J = 1 and

∫

R

|x |J(x)dx < ∞.
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Dispersal kernel assumptions
Exponentially bounded kernel (EB) Exponentially unbounded kernel (EU)

(Diekmann 1979, Thieme 1979, Schu-
macher 1980, Weinberger 1982, Coville
et al. 2008)

Definition
∃ α > 0 s.t. J satisfies

0 ≤ J(x) ≤ e−α|x|, for large x .

(Medlock and Kot 2003, Yagisita 2009)

Definition
J satisfies

J ′(x)/J(x) → 0 as |x | → +∞.

⇒ J(x) eα|x| → +∞ as |x | → +∞
for all α > 0.

x

0

J(x) = Ce−α|x|

J(x) = Ce−|x|2 J(x) = 1[−L,L](x)

x

0

J(x) = Ce−α|x|/(1+ln(1+|x|))

J(x) = Ce−
√

|x|J(x) = (1 + |x |)−3
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Exponentially bounded kernel: classical results

(Schumacher, 1980; Coville et Dupaigne, 2007): existence of traveling
wave solutions u(t, x) = U(x − ct) for speed c ≥ c∗ > 0;

∫

R

J(x − y)(U(y) − U(x))dy + cU ′(y) + f (U(y)) = 0, in R

U(−∞) = 1 and U(+∞) = 0 and U ′ < 0 in R.

0

U(x − ct)

x

c→
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Exponentially bounded kernel: classical results

The spreading speed c of a solution u of IDE is defined by:

lim sup
t→∞

u(t, |x | − wt) = 0 if w > c

lim inf
t→∞

u(t, |x | − wt) = 1 if 0 < w < c

(Lutcsher et al., 2005): if u0 is compactly supported, the spreading speed
c of u satisfies c = c∗, the minimal speed of traveling fronts.

→ spreading speed remains finite.
Numerical obs: the solution converges to a traveling front with constant profile.
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EU kernel: infinite spreading speed

Hypothesis: Exponentially unbounded kernel

J(x) is decreasing for all x ≥ 0, J is a C1 function for large x and

J ′(x)

J(x)
→ 0 as |x | → +∞.

Theorem 1 (Garnier, 2011)

If the kernel J is EU, the asymptotic spreading speed of u(t, x) is infinite.
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EU kernel: Level sets Eλ(t)

For all λ ∈ (0, 1), we define the level set Eλ(t) by:

Eλ(t) := {x ∈ R, u(t, x) = λ},

x0

1

λ

x1
λ(t) x2

λ(t)

u(t, x)

From Theorem 1, for all λ ∈ (0, 1),

lim
t→+∞

|x1
λ(t)|
t

= lim
t→+∞

|x2
λ(t)|
t

= +∞.
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EU kernel: Lower and Upper bounds of Eλ(t)

We get bounds for the position of the level sets, which explicitly depend
on the dispersal kernel J and the reaction term f .

Theorem 2 (Garnier, 2011)
Let J be EU. Then there exists ρ ≥ f ′(0) such that for any λ ∈ (0, 1),
and ε > 0, every element xλ(t) ∈ Eλ(t) verifies:

J−1
(

e−(f ′(0)−ε)t
)

≤ |xλ(t)| ≤ J−1
(

e−ρt
)

for large t.

Two additional hypotheses for the upper bound:

Hyp. 1 Hyp. 2

There exists ν0 ∈ (0, 1) such that or There exists C > 0, such that
∫

R

J(z)ν0 dz < ∞.

∣

∣

∣

∣

J ′(x)

J(x)

∣

∣

∣

∣

∼ C
1

|x | as |x | → ∞.
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EU kernel: some examples

Kernel J satisfying Hyp. 1 but not Hyp. 2:

◮ J is logarithmically power-like and sub-linear as |x | → ∞,

J(x) = Ce−α
√

|x| for large |x |, α > 0, C > 0.

→ every xλ(t) ∈ Eλ(t) satisfies for any ε > 0

(f ′(0) − ε)

α
t2 ≤ |xλ(t)| ≤ ρ

α
t2 for large t;

x0

u(t, x)

λ

xλ(t)f ′(0) − ε

α
t2

ρ

α
t2
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EU kernel: some examples

Kernel J satisfying Hyp. 2:

◮ J decays algebraically as |x | → ∞,

J(x) = C |x |−α for large |x |, α > 2, C > 0,

→ every xλ(t) propagates exponentially fast as t → +∞, for any
ε > 0

e
f
′(0)−ε

α
t ≤ |xλ(t)| ≤ e

ρ̃

α
t for large t,

(Cabré and Roquejoffre 2009): Similar results with fractional Laplacian diffusion:

∂tu(t, x) =

∫

R

cα

|x − y |1+2α

(

u(t, y) − u(t, x)
)

dy + f (u(t, x))

Let α ∈ (0, 1) and set c∗ = f ′(0)/(1 + 2α), then

lim
t→+∞

inf
|x|≤ect

u(t, x) = 1 if c < c∗ lim
t→+∞

sup
|x|≥ect

u(t, x) = 0 if c > c∗.
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EU kernel: qualitative results

Global behavior of the solution u(t, x) :

◮ The rate of spread increases in time like J−1(e−γt)/t.
→ acceleration of the propagation and infinite asymptotic spreading
speed,

◮ The profile of the front tends to flatten with time.
→ no convergence to traveling wave solution (Yagisita, 2009);
→ the leading edge of the population spreads faster.
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Conclusions

Real dichotomy

Exponentially Unbounded kernels:

◮ Infinite asymptotic spreading speed;

◮ The positions of the level sets accelerate with time faster than
J−1(e−γt);

◮ EU kernels = fat tailed kernels.

Exponentially Bounded kernels and RD equations:

◮ Finite spreading speed;

◮ The solution converges to a traveling front with constant profile;

◮ EB kernels = thin tailed kernels.

Taking Long Distance Dispersal events into account is of critical importance.
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Conclusions

Thank you for your attention
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