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Introduction

Motivation: Stream population

> local density dependent growth
» nonlocal dispersal in presence of unidirectional flow
» bounded habitat

» flow and growth regimes could depend on time
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Background

Consider n;(z) modeled by
ness(a) = [ K)o dy

» Q=(0,L)
» density dependent growth f(n)
» dispersal kernel K (z,y)
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Advective Kernel (Lutscher et al., Siam Review, 2005)
Let z(x,t) be density of moving individuals

2 +vzp = Dzgy — az, z(x,0) = do(x — y) (2)
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Advective Kernel (Lutscher et al., Siam Review, 2005)
Let z(x,t) be density of moving individuals
2t +v2p = Dzgy —z,  2(x,0) = do(z — y) (2)

Density of settlers at x at time T is then

T
kT(x)za/O z(x, s)ds
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Advective Kernel (Lutscher et al., Siam Review, 2005)
Let z(x,t) be density of moving individuals
2 + vz = Dzgy — a2z, 2(x,0) = do(x — y) (2)

Density of settlers at x at time T is then

T
kT(x)zoz/O z(x, s)ds

For T >> 1/«
K(xz;y) zoz/ z(z,s)ds
0

EDM 2012



Advective Kernel (Lutscher et al., Siam Review, 2005)
Let z(x,t) be density of moving individuals
zp+ vz = Dzgy —az,  2(2,0) = do(z —y) (2)

Density of settlers at x at time T is then

T
kT(x)zoz/O z(x, s)ds

For T >> 1/«
K(z;y) = oz/ z(z,s)ds
0
Integrate (2) from 0 to oo

D v
Z Ky — YKy — K = —8o(z —
5 " oz —y) (3)

with soln

EDM 2012



Asymmetric Laplace Kernel (advective velocity v)
Aeal(“J*y) Ty
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Linear Stability

Assuming f(0) =0, f’(0) = R > 0 one can consider the linear
stability of (1) for small solutions via

ni1(x) = L] = R/Q K(z,y) ne(y) dy

Let A1 (K) = p(&). For well-behaved K, f (e.g., Hardin et al. ’88)

> A (K) > 1: trivial soln unstable, (1) admits stable n.(z)
> A (K) < 1: trivial soln n.(x) = 0 stable

This allows study of relation between the organism’s ability to persist
and the biological parameters via the spectral radius of .Z
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Principal Eigenvalue \;
Consider
wmzRAmeam@

Differentiate

w%m:RéKﬁwmww@

One can use K’s DE to derive SLP for ¢ of the form
¢" +c(v)¢’ +d(N)p =0 (4)

w/ associated Robin type BCs (n.b. ¢(0) = 0)

» facilitates study of dependence of A1 (K') on parameters (e.g.,
critical domain size)
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Dispersal Success Function

We can also approximate ;.
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Dispersal Success Function
(5)

We can also approximate \;. Consider
s = [ Ko

K, yi) )
sty
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s(y) indicates the probability an individual starting at y successfully

settles in the habitat 2 after the dispersal event;
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Dispersal Success Approximation
For principal eigenfunction ¢ we have

M(K) é(z) = R /Q K(z,y)é(y) dy

Assume ||¢||; =1 and integrate
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Dispersal Success Approximation
For principal eigenfunction ¢ we have

Ammww:RLmemw@

Assume ||¢||; =1 and integrate

ME) = R[] Ko dya
= R [ sty
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Dispersal Success Approximation
For principal eigenfunction ¢ we have

Ammwm:RLmemw@

Assume ||¢||; =1 and integrate

ME) = R[] Ko dya
= R [ sty

7 | sty
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Dispersal Success Approximation
For principal eigenfunction ¢ we have

Aﬂ@ﬂ@:RLme¢

Assume ||¢||; =1 and integrate

(y) dy

MW)=R//KWW@@§J

0Jo z 0.9
= R s@)ow)dy <1/

R % 05

~ + | sy)dy o

L SZ ) ﬁ 0.3

—

a,1

]

5

EDM 2012

10 15 20
The stream length L

25

30



Dispersal Success Approximation
For principal eigenfunction ¢ we have

Aamaw:RLKumww@

Assume ||¢||; =1 and integrate

M) = B[ [ Kewowdy
/o £ o0
= R [ s(y)oly)dy o
Q o 08
R % 0.5
~ — [ s(y)dy o —,
L Ja ) e SoAhm

5

20
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The stream length L

DSA tends to underestimate A\;. We also have
M(K) < Rls|lwlloln < R

(dispersal loss will reduce growth rate from nonspatial model)
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Temporal Variations

Consider variations in growth and dispersal
ness(a) = [ Kt ulon() dy (6)

» K;(x,y) kernel for dispersal event at step ¢

> fi(n) growth dynamics at step ¢
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Example: Two kernel model

Consider linearized two kernel model Ky, R; and K5, Ry in succession:

ngro(z) = RQ/QKQ(xvy)nt+l(y)dy
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Example: Two kernel model

Consider linearized two kernel model Ky, R; and K5, Ry in succession:

ni+2(T)

RZ/QKQ(xvy)nt+l(y) dy
Ba [ Kaloon) [P [ Kat (] dy
RiRs /Q /Q Ko, 1)K (y, 2) na(2) dz dy

Rle/QK(x,z) ne(z)dz
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Effective two-stage kernel

Single kernel for two-stage succession

7mﬂ@:RAK@wm@My

where R = R1R> and

K(ay) = [ Kalo,2)Ka(ey) ds
Q
Similar calculation for eigenfunction as before shows

/\1(K) < RlRQ

> /A1(K) would be effective single rate for two stage process
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BVP for advective kernels
Consider eigenfunction
\ola) = RaRa | K(a,9) ota) dy

Let
¥(z) = Ry /Q Ky (2,y) 6(y) dy

Then by (7),

o) = 2 [ Kateg)widy
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BVP for advective kernels

Consider eigenfunction

() = Ry Ro / K(z,9) 6(y) dy (7)
Let
¥(z) = Ry /Q Ky (2,y) 6(y) dy
Then by (7),
o) = 2 [ Kateg)widy
Thus
W (@) = l";—llwx) + g—llwm - %Rl ()

¥ (a) = 120/ (0) + T2 0(a) — 52 U(a)
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Sturm-Liouville Problem for two stage process

Differentiating ¢” two more times and using 1’s equations yields:

@_pgep@®_ (L Q2 U1l2 ) (2 ), ag (0 RaRp
O S 10) (D1+D2 D1D2)¢ +C¢+D1D2 1 3 »=0

— vy e — |vicatonvs
WhereB—[Dl—i—Dz} andC—[ BDs ]

and associated boundary conditions:

' (0) = ai2¢(0)
¢ (L) = azp2¢(L)

(114 12 ) 07 0 - 120 O+ 52 (@2~ 1) 00

S
I
—~
o
=
Il
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D (az2 —as1) ¢ (L)

¢ (L) = <a2,1 + ;22) " (L) — az,

where a; ; are the exponential coefficients for K;
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Example: A\ vs. flow rate

Consider two flow rates v, and vy, keeping fixed average Fv

1wo step

0.8

Possible values of A

0.6

The priciple eigenvalue 2.
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EV’ 5 10 15 20

Average flow velocity (Ev)

For fixed Fv, as v; and vy vary, the principal eigenvalue A; varies
between two values

» Ev < Ev! implies A\; > 1
» Ev > Ev? implies \; < 1

» Interesting regime for modest averages Fv'! < Ev < Ev?
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Example: A\; vs. variation in flow rate

Fix v; = 0.1, let vy vary

The principle eigenvalue A

25 3 35

05 1 15 2
The flow velocity v,

> )\ is a decreasing function of vy (the larger the second flow
velocity, the harder it is for the population to persist)
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Comparison of Eigenvalue Approximations
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> (N1 ra2)? = (M twostep) /2 for small L
> (N1 Xa,2)Y? > (M wostep) /2 for larger L
» DSA A, 12 underestimates Aq twostep for larger L
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Random Kernels

We now consider

/ K (& — ) far (01 () dy (8)

where kernel parameters come from some distribution
K,, and f,, denote “random” growth and dispersal kernels at step ¢

Linearized operator time dependent so no eigenvalue analysis, but one
expects, at least with certain assumptions on the parameters, some
asymptotic analogue of \;.
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Abstract Result

Hardin et al. ’88 consider
Xpp1 = / K (2, 9)r(00,9) F(Xe(9)) = Ha, (X0), (9)

Given various conditions of H,, such as,
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Abstract Result

Hardin et al. ’88 consider

X1 = / K (2,9)r(an, ) F(X()) = Ha, (X2), (9)

Given various conditions of H,, such as,
(H1) Hy : C1(Q2) = C+(2) continuous
(H2) If z,y € C+(Q) and « > y then H,(z) > H,(y)

(H4) There exists a compact set D C C(£2) such that H,(Bp) C D
for all a € A.

(H8) Ao = H!(0) exists.
(H10) (a) Ifz,y € C(Q) and x < y then Aqz < Any for all a € A.
(b) ||Aa]| < h for all a € A.
Theorem (Hardin et al ’88)
The limit r = tlim |[Ag, 0 -0 Aqg, ||} exists with probability one.
— 00
(a) If r < 1, the population becomes extinct;

(b) If r > 1, then population persists
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Random Kernels

The limit
r= lim ||Aq, 00 Ag, ||/t

t—o0

is an analogue of the Gelfand formula for a bounded linear operator

T n|l/n
p(A) = lim [lA™]|
The abstract result in Hardin et al. can be adapted to

/ Koo (& — ) foy (-1 (4))ly

w/ {au}+>0 independent identically distributed from A = [o, @] with
the following assumptions of f and K:
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Assumptions

(C1)  (a) Ka(z —y) is strictly positive and continuous for x,y € Q;
(b) There exist K, K > 0 such that K < Ko(x —y) < K foralla € A
(C2)  (a) fa:R— R4 continuous; fo(u) =0 for all u < 0. Moreover, fu(u)

is continuous in o € A uniformly in u € R.
(b) For any a € A,

(i) fa(uw) is an increasing function in u;
(i) Lol o Jalv) jpqy 5 4 > 0.
(¢) (i) fo is right differentiable at 0
(ii) ﬂ.T(u) — £1.(0) asu — 0% uniformly for o € A, B
) There exist f, f > 0 such that f = heli\ fL0) < fL00)< f
- - «@
) There exists m > 0 such that 0 < fo(u) < m for all u € C4(Q)
) For b=mk [, dy, there exists f1 = inf4 fa(b) > 0.
- [e1S]
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Assumptions

(C1)  (a) Ka(z —y) is strictly positive and continuous for x,y € Q;
(b) There exist K, K > 0 such that K < Ko(x —y) < K foralla € A
(C2)  (a) fa:R— R4 continuous; fo(u) =0 for all u < 0. Moreover, fu(u)

is continuous in o € A uniformly in u € R.
(b) For any a € A,

(i) fa(uw) is an increasing function in u;
(i) Lol o Jalv) jpqy 5 4 > 0.
(¢) (i) fo is right differentiable at 0
(ii) L‘T(u) — f1,(0) as u — 0T uniformly for o € A,
iif)
)
)

1

(iii) There exist f, f > 0 such that f = iga Loy < fLoy<f
- - «

(d) (i) There exists m > 0 such that 0 < fa(u) < m for all u € C ()
(ii) For b= mk [ dy, there exists f1 = inf4 fa(b) > 0.
= ac

Then r = lim ||Aq, 0---0 Ay, ||V exists...
t—o0
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A1 analogue for random model

Instead of r = lim ||Ag, 0 --- 0 Ag,||*/*, consider
t—o0

A= lim { /Q e (2) dm] . (10)

t—o0

where

() = /Q Ki(z — 4) £, (0)ie—1 (4) dy.

» A = asymptotic growth rate of the population

Conjecture: A and r cross 1 at same time
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: : 1/t
Example: convergence of A; = (./5) ng(x) d;l;) /

Suppose K; € {K;, K2}, chosen with 50/50 probability (CFK)

2.4
221 B

2l ]
1.8 _ _ ) i

L_19,N0—n/19(sm(n x/19))
-
16 / 1
1.4 M‘L_]&NO 2/L 4
12 B
L:lQ,Noz 1/ . . .
0 100 200 300 400 500 600

Time t

Regardless of IC or flip sequence, Ay — A ~ 1.22
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Two-step vs. Coin-Flip
For comparison, consider limit A for CFK model vs. exact Ay (K) for
two-step model:

13 T T T

12r A of the random model

[N

A

o
©

1, wostep R

The principle eigenvalue
o o o
=2 ~ o

o
o

I
=~

.
5 10 15 20
The stream length L

Note: For L =19, A ~ 1.22 as in previous plot.

(vy =0.1,vg =1,Ry =1.2, Ro = 1.5, D] =1, Dy =1, ay = 1, ag = 1)
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Example: Random flow speed
Consider A for random model with flow velocity chosen from log
normal distribution with p = 0.95, as a function of the variance:

1.015

Mean (v)=0.95 ‘
1.01f *

1.005F ¥

0.995

0.985|
0.98f
0.975F

0.97

0.965 : : :
0 05 1 15 2
Variance of v

Other parameters fixed with R=12, D=1, a = 1.
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Example 2: Different means

Similar scenario, with three different means:

1.04 T T T
1.03F 1
o
1.02| le) [¢] 4
o b
[¢]
101 o * %
¢} % *
S ¥ o ____ -
1 5 5 -
+
< 0.99r o * * b
* +
oe8f ¥ + F 4
* +
0.97% PR 1
+
0.96 - =
O mean(v)=0.9
0.95+ *  mean(v)=0.95
+ mean(v)=1
0.94 L .
0 0.5 1 15 2

Variance of v
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Explicit calculation for A
Let no(z) = 1.

/\1=/Q 1(z) do = — //ley)dwdy = %/ﬂsl(y)dy

Continuing,
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Explicit calculation for A
Let ng(z) = L.

L
R R
Q QJa Q
Continuing,
1/2 1/2
RiR
Ay = (R2 /Kz:cy)m( )dydx> =< le/sz(y)ﬁ(y)dy>
Q
RiRsR e
AL ( M [ sl Kl >dydz)
RiRoR3R \
i ( 1421413 4///34 23 K3(Z3,Z2)K2(22,21)7’1(Z1)dz3dz?dzl
/
1/n
R n—1
A, = f// Sn(zn—l) HKi(zi,zi_1)7‘1(21)dzn_1...dz1
Q Q =2
n—1 terms
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Asymmetric Laplace Kernels

We can compute this exactly for random asymmetric Laplace kernels
since, essentially,

R 2t+1
m(z) =7 e+ D ajen” (11)
J

9

where «; + are certain computable coefficients that depend on the
kernels and the ;’s are front/back kernel coefficients from the
random kernels. Integrating (11) yields

1/t
2t+1 /

2 a; v; L
A= [RIVE |ag, + = Zt ginh 2= 12
=B et 23 S s (12)

Nice closed form solution, but proving computationally unstable due
to small divisors; further complicated by the fact that we need t >> 1
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