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(1) Non-oriented, based on kinesis and bio-diffusion 

 

Individual level movement mechanisms: 

Ø  sensory stimuli such as stomach 
fullness 

Ø  stimuli coming from an animal’s 
current location  

Ø  cause an alteration in an 
individual’s movement parameters 
(speed, turning angle) 

Ø  movement decision with random 
direction  

© Marlin E Rice 



(1) Non-oriented, based on kinesis and bio-diffusion 
 

 

Individual level movement mechanisms: 

(2) Oriented, based on taxis and perceptual range 
 

 Ø  e.g. visual detection of food good 
habitats  

Ø  stimuli stem from a location beyond 
the animal’s current position  

Ø  movement in a predictable direction.  



(1) Non-oriented, based on kinesis and bio-diffusion 
 

 

Individual level movement mechanisms: 

(2) Oriented, based on taxis and perceptual range 
 

 

Ø  path integration (e.g., waggle dance in bees or 
magnetic compasses in birds) 
  
Ø  cognitive maps (e.g., geomagnetic coordinates 
and use of landmarks) 

(3) Spatial memory, based on previous information 
derived from the recollection of  
 - an individual’s own history,  
 - communication with conspecifics,  
 - or as a genetic inheritance from its ancestors  
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Resources… variability across 4 gradients: 

a)  Amount 

 few many 



variability across 4 gradients: 

b)  Spatial configuration 
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variability across 4 gradients: 

c)  Temporal variation 
 

 

b)  Spatial configuration 
  

a)  Amount 

Summer  Winter 

Dynamic Landscape 

Static  Landscape 
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variability across 4 gradients: 

c)  Temporal variation 
 

b)  Spatial configuration 
a)  Amount 

Summer  Winter 

Dynamic Landscape: 

variable but predictable 

 

Summer  Winter 
d)  Predictability 

Dynamic Landscape: 

variable and  

unpredictable 

 

Resources… 
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Population distributions 



Population distributions 
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 The Eastern Steppe of Mongolia 



 
 
 Dynamic Habitat Models using Remote Sensing Data 

Olson et al. Cons. Letters 2011 
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Comparison of relocation patterns among individuals 

Data: 1 year of relocations in 16 day intervals of 
 
- 5 Caribou of the Porcupine caribou herd 
 
- 5 Mongolian gazelle 
 
- 5 Patagonian guanaco 
 
- 5 Moose of Massachusetts 



Drivers of  population-level movement 
Landscape dynamics in relation to movement 
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 Part 3: Artificial life techniques to model movement 
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Individual-based Neural Net Genetic Algorithm (ING) Model 
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Two key landscape features: 
 

1)  Patch Size 
2)  Resource Predictability 

 
Foci:    
        1) Frequency 
        2) Context of use 
        3) “Relevance” of different movement mechanisms 
 

Individual-based Neural Net Genetic Algorithm (ING) Model 



Mueller, Fagan, & Grimm. Theoretical Ecology. 2011. 

Contours are 
efficiency of 
movement 
 
( Avg. resources per  
movement step  ) 

Efficiency is greatest in predictable landscapes with large patch sizes 



Frequency of behaviors 



Relevance of behaviors 
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Unpredictable landscapes 
(no non-oriented) 
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