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Habitat fragmentation

Habitat loss = emergence of discontinuities (fragmentation) in an
organism’s preferred environment (habitat).

Causes:
» Natural: geological processes, climate change.
» Human: agriculture, urban areas.

Effects: One of the main cause of extinction of species
» increased competition in remaining habitats

» size effects
» impossible immigration and rescue effects

Characterization of the “fragmentation“? Optimization of conservation
strategies?



A reaction-diffusion model

oty — Au = f(x, u)

u: population density
Au: diffusion term
f(x, u): growth rate, depends on the space variable x

u(x) := f(x,0): growth rate per capita at small density

u(x) > 0: favourable area / habitat
u(x) < 0: unfavourable area



A reaction-diffusion model

oy — Au = f(x, u)
Hypotheses:
> f(x,0) =0
» U+ f(x,u)/u decreasing (intraspecific competition)
» IM > 0| ¥x, f(x,M) < 0 (saturation)

Example: logistic growth rate f(x, u) = u(x) — v?

Additional hypothesis: x — f(x, u) periodic Vu > 0



Characterization of extinction/persistence |

{ o — Au = f(x, u) (0,00) xC,
u(0,x) =up(x) >0 {0} xC.

Linearized operator near the steady state u = 0:
—Lp:=—A¢ — u(x)¢ where u(x) := f(x,0)
The operator £ admits unique principal eigenelements (qb, ko(u)) s.t.

¢ >0 Q,
¢ periodic
Example: If f = f(u) does not depend on x, then

p="F0), ¢=1 and ko(u)=—F(0).



Characterization of extinction/persistence |l

oy — Au = f(x,u) (0,00) x Q

Theorem

If ko(1) < 0, then there exists a unique positive steady state p, which
is globally attractive, that is,

if uyp#0, then . "T u(t,x) =p(x) loc. x € Q.
—400

Ifko(p) > 0, then 0 is globally attractive.

» Ludwig-Aronson-Weinberger 79 (dim 1)
» Cantrell-Cosner 89 (dim N)
» Berestycki-Hamel-Roques 05 (periodic, general f)



Characterization of extinction/persistence |l

Theorem
If ko(1) < 0, then there exists a unique positive steady state p, which
is globally attractive, that is,

if uyp#0, then lim u(t,x)=p(x) loc. x Q.
t—+o0
If ko(p) > 0, then 0O is globally attractive.

Interpretation:

» The stability of 0 determines the persistence of the population.
» It only depends on the growth rate at small density

p(x) = fy(x; 0).
> Ko(p1) < Ko(uz) = p1 “better environment* than p,.

What is the dependence of i — ko(11)?
How to measure the "fragmentation of the habitat” through ?



The patch model in 1d

gt in A “habitat”, L
X) = _ with >
pa(x) { 1 in _%7%)\/\ M H
Theorem
The sets A minimizing ko(ua) (over sets of length |A|) are the
intervals.

» Cantrell-Cosner 91 when (-1, 1)\Ainterval and Neumann BC
» Berestycki-Hamel-Roques 05 over arbitrary A’s

Interpretation: The habitat A giving the higher chance of persistence
is the unfragmented one.

For the patch model in dim 1, unfragmented habitat = intervals.
More general p ?



The Schwarz periodic rearrangement

=11 pu* =15 with A* .= (-2 A1) centered interval of length |A|.

p=>m,ala, with Ay C ... C Ap C (—=L/2,L/2) and o; > O:
m
wr = ZaﬂA/f
i—1

With a density argument...

Definition

u periodic measurable bounded: 3! periodic measurable 1.*, called
the Schwarz periodic rearrangement of 1.,

» with the same distribution function,
> even
» nonincreasing on (0, L/2).



Definition of the Schwarz rearrangement

Definition
1 periodic measurable bounded: 3! periodic measurable 1*, called
the Schwarz periodic rearrangement of 1,

» with the same distribution function,

> even

» nonincreasing on (0, L/2).

A continuous function p and its Schwarz rearrangement p*.

Observation (Berestycki-Hamel-Roques 05): "less fragmented”
habitat is associated with the growth rate p*.



A Faber-Krahn inequality

Proposition
(Berestycki-Hamel-Roques 05)

ko(1*) < ko(p).

Corollary: There exist some p's such that if
o= AU+ p(x)u— w2, v =Av+ p*(X)v — v2,

with u(0, x) = v(0, x) = up(x), then
lim;—, 10 U(t, x) = 0 while v converges to a positive steady state.

Interpretation: The habitat A giving the higher chance of persistence
is the unfragmented one.



A Faber-Krahn inequality

Proposition
(Berestycki-Hamel-Roques 05)

ko(1*) < ko(p).

Proof. ko(u) periodic principal eigenvalue of —L¢$ = —¢"” — pu(x)¢
self-adjoint. Thus ko(u) is a Rayleigh quotient:

. < —Loa,a > .
ko(p) = min == — min :
ocEC),e, <o, >p2 aEC;e, fO a2

1
/ (o — (x)a?)
0

Two classical properties of rearrangement:

f01 p*(a*)? > f01 pa?  Hardy-Littlewood inequality
fo1(a*)’2 < f01 a’? Polya-Szego inequality



A Faber-Krahn inequality

Proposition
(Berestycki-Hamel-Roques 05)

ko(1™) < ko()-

Corollary: There exist some u’s such that if
o= Au+ p(x)u—u?, v =Av+ pr(x)v — V2,

with u(0, x) = v(0, x) = Up(x), then
lim:,+~ u(t, x) = 0 while v converges to a positive steady state.

Interpretation: The habitat A giving the higher chance of persistence
is the unfragmented one.

What happens when the species persists in both environments?



The spreading property in homogeneous media

f = f(u) does not depend on x

Ot — Oxx U = f(U)

Uy compactly supported

Theorem
(Kolmogorov-Petrovsky-Piskunov 37, Aronson-Weinberger 78)

1 ifw € [0, w*),

0ifw > w*, ast— +oo

u(t, wt) — {
where w* = 2,/f'(0).

Interpretation: The population “spreads” with speed w*.



The spreading property in periodic media

f = f(x, u) periodic in x

Ot — Oxxu = f(x, U)

Up compactly supported

Theorem
(Gartner-Freidlin 79, Weinberger 02, Berestycki-Hamel-N. 08)
Ifko(p) < 0, Iw* = w*(u) s. ¢

1ifw e [0, w*)

0ifw> w* ast— +oo

u(t,wt) — {

Dependence i — w*(u)? Influence of the “fragmentation of the
habitat on the spreading speed w*?



Characterization of the spreading speed

Lo = Oucp + p(X)
VpER, Lpp:=e”L(ePp) = dup — 2pdxp + (P* + (X))
L, admits a unique periodic principal eigenvalue k,(;:), def. by:
{ —Lpp = Kp(n)p in R,

¢ >0,
@ is periodic.

Proposition
If k(1) < 0, then

* o _kp(ﬂ)
Wil = min—p



Statement of the result

Definition
u periodic measurable bounded: 3! periodic measurable p*, called
the Schwarz periodic rearrangement of .,

» with the same distribution function,

> even

» nonincreasing on (0, L/2).

Theorem
IN. 09]

w* (") = w*(p)

Interpretation: The unfragmented habitat gives the higher spreading
speed for the species when it persists.



Corollary for the patch model

pt in A “habitat, N _
X) = . with >
pa(x) {u N (—L \A p>p
Corollary
The sets A maximizing w*(1.4) (over sets of length |A|) are the
intervals.
Proof.

> w*(uy) > w*(ua)forall A
> 15 = pa-, where A* is the centered interval of length |A]



A related nonsymmetric eigenvalue optimization pbm

sy i —Ko()
win) =min—3

where k,(1) = periodic principal eigenvalue of L.
= If kp(p*) < kp(p) for all p, then w*(u*) > w* ().

Reformulation of our problem Prove that for all p € R:

ko(1) < kp(11)

where p* is the Schwarz rearrangement of p.



Comparison with the Faber-Krahn inequality (p = 0)

Proposition
(Berestycki-Hamel-Roques 05)

ko(1*) < ko(p).

Issues when p #£ 0 :
» No Rayleigh quotient since L, is not symmetric.

Lop = ¢" — 2p¢’ + (0° + p(X))¢.

» Rearrangement properties are integral ones.

» Very few litterature on the rearrangement of non-symmetric
operators (Alvino-Trombetti-Lions 90-91,
Hamel-Nadirashvili-Russ 05-07).

— Find an integral characterization of ky(y).



An integral characterization of kp(1t)

Proposition
.09 150 =, ([0 [Tt )

0?

Corollary
Ko(p*) < kp(u) for all p and thus w*(p*) > w*(u).

Proof. Follows from the two classical properties of rearrangement:

1 1 1 1
/ M*(a*)Z > / ‘LLOL2 and / (a*)/2 < / 0/2’
0 0 0 0

and from f01 v fo @ since the rearrangement preserves the
distribution function.



A general characterization of principal eigenvalue for
non-symetric operators

Lo = div(A(X)VP) + q(X) - Vé + u(X)¢

ko(A, g, 1): periodic principal eigenvalue of —L

Theorem

(N. 09)

ko(A, g, 1) = MiNg periodic Ko(A, 0, u + VBAVS + q - V3 — divg/2)
Remark: Similar formulas with different boundary conditions by
Donsker-Varadhan (76), Holland (78).

Very useful to optimize principal eigenvalues of non-symmetric
operators, like operators L.

= Other applications to reaction-diffusion equations in periodic
media.



What happens in multidimensional media?

If 1= p(x1, x2), then
1. rearrange x1 — u(Xq, X2) w.r.t to x; with x, fixed
2. do the same with x»
= one obtains the Steiner symmetrization p* of u. Itis
» with the same distribution function,
» symmetric w.r.t {x; = 0} and {x, = 0}
» nonincreasing w.r.t x; € (0,1/2) and x; € (0,1/2)

But, it is not the unique function satisfying these properties.
(Exple: rearrange first in xo and then in xy)

Proposition
(N. 09) S = p(x1, X2) s.t. w*(p*) < w*(p).



Open problems

1. pa=ptin A p=in (0,1)%\A. Which A minimizes ko(ua) with |A]|
prescribed?
Conjecture in Hamel-Roques 07: A= stripe, ball or
complementary of a ball.

2. Does this A maximizes A — w*(u4)?

3. Other notions of “fragmentation”? u¢ and u, given, which one is
the “most fragmented”?
Variations w.r.t the period: EISmaily-Hamel-Roques 09, N. 09,
Hamel-Fayard-Roques 10, Hamel-N.-Roques 12

4. Other classes of heterogeneities ?
Random stationary ergodic environment: N. in prep



Thank you for your attention.



