Effect of habitat fragmentation on persistence and spreading of populations

Grégoire Nadin

Laboratoire Jacques-Louis Lions, université Paris 6

Miami, december 2012

Habitat fragmentation

Habitat loss \Rightarrow emergence of discontinuities (*fragmentation*) in an organism's preferred environment (*habitat*).

Causes:

- Natural: geological processes, climate change.
- Human: agriculture, urban areas.

Effects: One of the main cause of extinction of species

- increased competition in remaining habitats
- size effects
- impossible immigration and rescue effects

Characterization of the "fragmentation"? Optimization of conservation strategies?

A reaction-diffusion model

$$\partial_t u - \Delta u = f(x, u)$$

u: population density

 Δu : diffusion term

f(x, u): growth rate, depends on the space variable x

 $\mu(x) := f'_u(x, 0)$: growth rate per capita at small density

 $\mu(x) > 0$: favourable area / habitat

 $\mu(x) < 0$: unfavourable area

A reaction-diffusion model

$$\partial_t u - \Delta u = f(x, u)$$

Hypotheses:

- f(x,0) = 0
- ▶ $u \mapsto f(x, u)/u$ decreasing (intraspecific competition)
- ▶ $\exists M > 0 \mid \forall x, \ f(x, M) \leq 0$ (saturation)

Example: logistic growth rate $f(x, u) = \mu(x) - u^2$

Additional hypothesis: $x \mapsto f(x, u)$ periodic $\forall u \ge 0$

Characterization of extinction/persistence I

$$\begin{cases} \partial_t u - \Delta u = f(x, u) & (0, \infty) \times C, \\ u(0, x) = u_0(x) \ge 0 & \{0\} \times C. \end{cases}$$

Linearized operator near the steady state $u \equiv 0$:

$$-\mathcal{L}\phi := -\Delta\phi - \mu(x)\phi$$
 where $\mu(x) := f'_u(x,0)$

The operator $\mathcal L$ admits unique principal eigenelements $(\phi, k_0(\mu))$ s.t.

$$\begin{cases} -\mathcal{L}\phi &= \textit{k}_0(\mu)\phi & \quad \Omega, \\ \phi &> 0 & \quad \Omega, \\ \phi & \text{periodic} \end{cases}$$

Example: If f = f(u) does not depend on x, then

$$\mu = f'(0), \quad \phi \equiv 1 \quad \text{and} \quad k_0(\mu) = -f'(0).$$

Characterization of extinction/persistence II

$$\partial_t u - \Delta u = f(x, u) \quad (0, \infty) \times \Omega$$

Theorem

If $k_0(\mu) < 0$, then there exists a unique positive steady state p, which is globally attractive, that is,

$$\text{if} \quad u_0\not\equiv 0, \quad \text{ then } \quad \lim_{t\to +\infty} u(t,x) = p(x) \quad \text{ loc. } x\in \Omega.$$

If $k_0(\mu) \ge 0$, then 0 is globally attractive.

- ► Ludwig-Aronson-Weinberger 79 (dim 1)
- Cantrell-Cosner 89 (dim N)
- Berestycki-Hamel-Roques 05 (periodic, general f)

Characterization of extinction/persistence III

Theorem

If $k_0(\mu) < 0$, then there exists a unique positive steady state p, which is globally attractive, that is,

$$\text{if} \quad u_0\not\equiv 0, \quad \text{ then } \quad \lim_{t\to +\infty} u(t,x) = p(x) \quad \text{ loc. } x\in \Omega.$$

If $k_0(\mu) \ge 0$, then 0 is globally attractive.

Interpretation:

- ► The stability of 0 determines the persistence of the population.
- It only depends on the growth rate at small density $\mu(x) = f'_{\mu}(x,0)$.
- ▶ $k_0(\mu_1) \le k_0(\mu_2) \Rightarrow \mu_1$ "better environment" than μ_2 .

What is the dependence of $\mu \mapsto k_0(\mu)$? How to measure the "fragmentation of the habitat" through μ ?

The patch model in 1d

$$\mu_{\mathcal{A}}(x) = \left\{ \begin{array}{ll} \mu^+ & \text{in} \quad \mathcal{A} \quad \text{"habitat"}, \\ \mu^- & \text{in} \quad (-\frac{1}{2},\frac{1}{2}) \backslash \mathcal{A}. \end{array} \right. \quad \text{with } \mu^+ > \mu^-$$

Theorem

The sets A minimizing $k_0(\mu_A)$ (over sets of length |A|) are the intervals.

- ► Cantrell-Cosner 91 when $(-\frac{1}{2}, \frac{1}{2}) \setminus A$ interval and Neumann BC
- Berestycki-Hamel-Roques 05 over arbitrary A's

Interpretation: The habitat *A* giving the higher chance of persistence is the unfragmented one.

For the patch model in dim 1, unfragmented habitat \equiv intervals. More general μ ?

The Schwarz periodic rearrangement

$$\mu=1_A$$
: $\mu^\star:=1_{A^\star}$ with $A^\star:=(-\frac{|A|}{2},\frac{|A|}{2})$ centered interval of length $|A|$. $\mu=\sum_{i=1}^m \alpha_i 1_{A_i}$, with $A_1\subset\ldots\subset A_m\subset (-L/2,L/2)$ and $\alpha_i\geq 0$:

$$\mu^{\star} := \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i^{\star}}$$

With a density argument...

Definition

 μ periodic measurable bounded: \exists ! periodic measurable μ^* , called the Schwarz periodic rearrangement of μ ,

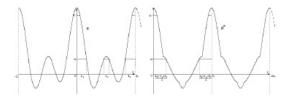
- with the same distribution function,
- even
- nonincreasing on (0, L/2).

Definition of the Schwarz rearrangement

Definition

 μ periodic measurable bounded: $\exists !$ periodic measurable μ^* , called the Schwarz periodic rearrangement of μ ,

- with the same distribution function,
- even
- ▶ nonincreasing on (0, L/2).



A continuous function μ and its Schwarz rearrangement μ^* .

Observation (Berestycki-Hamel-Roques 05): "less fragmented" habitat is associated with the growth rate μ^* .

A Faber-Krahn inequality

Proposition

(Berestycki-Hamel-Roques 05)

$$k_0(\mu^*) \leq k_0(\mu).$$

Corollary: There exist some μ 's such that if

$$\partial_t u = \Delta u + \mu(x)u - u^2, \quad \partial_t v = \Delta v + \mu^*(x)v - v^2,$$

with $u(0,x)=v(0,x)=u_0(x)$, then $\lim_{t\to +\infty}u(t,x)=0$ while v converges to a positive steady state.

Interpretation: The habitat *A* giving the higher chance of persistence is the unfragmented one.

A Faber-Krahn inequality

Proposition

(Berestycki-Hamel-Roques 05)

$$k_0(\mu^*) \leq k_0(\mu).$$

Proof. $k_0(\mu)$ periodic principal eigenvalue of $-\mathcal{L}\phi = -\phi'' - \mu(x)\phi$ self-adjoint. Thus $k_0(\mu)$ is a *Rayleigh quotient*:

$$k_0(\mu) = \min_{\alpha \in \mathcal{C}^1_{per}} \frac{< -\mathcal{L}\alpha, \alpha >_{L^2}}{< \alpha, \alpha >_{L^2}} = \min_{\alpha \in \mathcal{C}^1_{per}} \frac{1}{\int_0^1 \alpha^2} \int_0^1 (\alpha'^2 - \mu(x)\alpha^2)$$

Two classical properties of rearrangement:

$$\begin{array}{ll} \int_0^1 \mu^\star(\alpha^\star)^2 \geq \int_0^1 \mu \alpha^2 & \text{Hardy-Littlewood inequality} \\ \int_0^1 (\alpha^\star)'^2 \leq \int_0^1 \alpha'^2 & \text{Polya-Szego inequality} \end{array}$$

A Faber-Krahn inequality

Proposition

(Berestycki-Hamel-Roques 05)

$$k_0(\mu^*) \leq k_0(\mu).$$

Corollary: There exist some μ 's such that if

$$\partial_t u = \Delta u + \mu(x)u - u^2, \quad \partial_t v = \Delta v + \mu^*(x)v - v^2,$$

with $u(0,x)=v(0,x)=u_0(x)$, then $\lim_{t\to +\infty} u(t,x)=0$ while v converges to a positive steady state.

Interpretation: The habitat *A* giving the higher chance of persistence is the unfragmented one.

What happens when the species persists in both environments?

The spreading property in homogeneous media

f = f(u) does not depend on x

$$\partial_t u - \partial_{xx} u = f(u)$$

 u_0 compactly supported

Theorem

(Kolmogorov-Petrovsky-Piskunov 37, Aronson-Weinberger 78)

$$u(t, wt)
ightarrow \left\{ egin{array}{ll} 1 & \emph{if } w \in [0, w^*), \\ 0 & \emph{if } w > w^*, \end{array}
ight. as \ t
ightarrow + \infty$$

where $w^* = 2\sqrt{f'(0)}$.

Interpretation: The population "spreads" with speed w^* .

The spreading property in periodic media

$$f = f(x, u)$$
 periodic in x

$$\partial_t u - \partial_{xx} u = f(x, u)$$

u₀ compactly supported

Theorem

(Gartner-Freidlin 79, Weinberger 02, Berestycki-Hamel-N. 08) If $k_0(\mu) < 0$, $\exists w^* = w^*(\mu)$ s. t.

$$u(t, wt)
ightarrow \left\{ egin{array}{ll} 1 & \textit{if } w \in [0, w^*) \ 0 & \textit{if } w > w^* \end{array}
ight. \quad \textit{as } t
ightarrow + \infty$$

Dependence $\mu \mapsto w^*(\mu)$? Influence of the "fragmentation of the habitat" on the spreading speed w^* ?

Characterization of the spreading speed

$$\mathcal{L}\varphi := \partial_{xx}\varphi + \mu(x)\varphi$$

$$\forall p \in \mathbb{R}, \quad L_p\varphi := e^{px}\mathcal{L}(e^{-px}\varphi) = \partial_{xx}\varphi - 2p\partial_x\varphi + (p^2 + \mu(x))\varphi.$$

 L_p admits a unique **periodic principal eigenvalue** $k_p(\mu)$, def. by:

$$\begin{cases} -L_p \varphi = k_p(\mu) \varphi \text{ in } \mathbb{R}, \\ \varphi > 0, \\ \varphi \text{ is periodic.} \end{cases}$$

Proposition

If $k_0(\mu) < 0$, then

$$w^*(\mu) = \min_{\rho>0} \frac{-k_\rho(\mu)}{\rho}.$$

Statement of the result

Definition

 μ periodic measurable bounded: \exists ! periodic measurable μ^* , called the Schwarz periodic rearrangement of μ ,

- with the same distribution function,
- even
- nonincreasing on (0, L/2).

Theorem

[N. 09]

$$\mathbf{w}^*(\mu^*) \geq \mathbf{w}^*(\mu)$$

Interpretation: The unfragmented habitat gives the higher spreading speed for the species when it persists.

Corollary for the patch model

$$\mu_{\mathcal{A}}(\mathbf{x}) = \left\{ \begin{array}{ll} \mu^+ & \text{in} \quad \mathcal{A} \quad \text{"habitat"}, \\ \mu^- & \text{in} \quad (-\frac{1}{2},\frac{1}{2}) \backslash \mathcal{A}. \end{array} \right. \quad \text{with } \mu^+ > \mu^-$$

Corollary

The sets A maximizing $w^*(\mu_A)$ (over sets of length |A|) are the intervals.

Proof.

- $w^*(\mu_A^*) \ge w^*(\mu_A)$ for all A
- lacksquare $\mu_{A}^{\star}=\mu_{A^{\star}},$ where A^{\star} is the centered interval of length |A|

A related nonsymmetric eigenvalue optimization pbm

$$w^*(\mu) = \min_{\rho > 0} \frac{-k_\rho(\mu)}{\rho}$$

where $k_p(\mu)$ = periodic principal eigenvalue of L_p .

$$\Rightarrow$$
 If $k_p(\mu^*) \le k_p(\mu)$ for all p , then $w^*(\mu^*) \ge w^*(\mu)$.

Reformulation of our problem Prove that for all $p \in \mathbb{R}$:

$$k_p(\mu^{\star}) \leq k_p(\mu)$$

where μ^{\star} is the Schwarz rearrangement of μ .

Comparison with the Faber-Krahn inequality (p = 0)

Proposition

(Berestycki-Hamel-Roques 05)

$$k_0(\mu^{\star}) \leq k_0(\mu).$$

Issues when $p \neq 0$:

▶ No Rayleigh quotient since L_p is not symmetric.

$$L_p \phi = \phi'' - \frac{2p}{p} \phi' + (p^2 + \mu(x)) \phi.$$

- Rearrangement properties are integral ones.
- Very few litterature on the rearrangement of non-symmetric operators (Alvino-Trombetti-Lions 90-91, Hamel-Nadirashvili-Russ 05-07).
- \rightarrow Find an integral characterization of $k_p(\mu)$.

An integral characterization of $k_p(\mu)$

Proposition

(N. 09)
$$k_p(\mu) = \max_{\alpha \in \mathcal{C}_{per}^1} \frac{1}{\int_0^1 \alpha^2} \Big(\int_0^1 \alpha'^2 - \int_0^1 \mu(x) \alpha^2 - p^2 \frac{1}{\int_0^1 \frac{1}{\alpha^2}} \Big)$$

Corollary

 $k_p(\mu^\star) \leq k_p(\mu)$ for all p and thus $w^*(\mu^\star) \geq w^*(\mu)$.

Proof. Follows from the two classical properties of rearrangement:

$$\int_0^1 \mu^\star(\alpha^\star)^2 \geq \int_0^1 \mu \alpha^2 \quad \text{ and } \quad \int_0^1 (\alpha^\star)'^2 \leq \int_0^1 \alpha'^2,$$

and from $\int_0^1 \frac{1}{\alpha^2} = \int_0^1 \frac{1}{(\alpha^*)^2}$ since the rearrangement preserves the distribution function.

A general characterization of principal eigenvalue for non-symetric operators

$$\mathcal{L}\phi := \operatorname{\textit{div}}(A(x)\nabla\phi) + q(x)\cdot\nabla\phi + \mu(x)\phi$$

 $k_0(A,q,\mu)$: periodic principal eigenvalue of $-\mathcal{L}$

Theorem

(N. 09)

$$k_0(A, q, \mu) = \min_{\beta \ periodic} k_0(A, 0, \mu + \nabla \beta A \nabla \beta + q \cdot \nabla \beta - divq/2)$$

Remark: Similar formulas with different boundary conditions by Donsker-Varadhan (76), Holland (78).

Very useful to optimize principal eigenvalues of non-symmetric operators, like operators L_p .

 \Rightarrow Other applications to reaction-diffusion equations in periodic media.

What happens in multidimensional media?

If
$$\mu = \mu(x_1, x_2)$$
, then

- 1. rearrange $x_1 \mapsto \mu(x_1, x_2)$ w.r.t to x_1 with x_2 fixed
- 2. do the same with x_2
- \Rightarrow one obtains the **Steiner symmetrization** μ^{\star} of μ . It is
 - with the same distribution function,
 - symmetric w.r.t $\{x_1 = 0\}$ and $\{x_2 = 0\}$
 - ▶ nonincreasing w.r.t $x_1 \in (0, 1/2)$ and $x_2 \in (0, 1/2)$

But, it is not the unique function satisfying these properties. (Exple: rearrange first in x_2 and then in x_1)

Proposition

(N. 09)
$$\exists \mu = \mu(x_1, x_2)$$
 s.t. $\mathbf{w}^*(\mu^*) < \mathbf{w}^*(\mu)$.

Open problems

- μ_A = μ⁺ in A, μ⁻ in (0,1)²\A. Which A minimizes k₀(μ_A) with |A| prescribed?
 Conjecture in Hamel-Roques 07: A= stripe, ball or complementary of a ball.
- 2. Does this A maximizes $A \mapsto w^*(\mu_A)$?
- 3. Other notions of "fragmentation"? μ_1 and μ_2 given, which one is the "most fragmented"? Variations w.r.t the period: ElSmaily-Hamel-Roques 09, N. 09, Hamel-Fayard-Roques 10, Hamel-N.-Roques 12
- Other classes of heterogeneities ?
 Random stationary ergodic environment: N. in prep

Thank you for your attention.