Evolution of Dispersal in Heterogeneous Landscapes

Yuan Lou

Department of Mathematics Mathematical Biosciences Institute Ohio State University Columbus, OH 43210, USA

Talk Outline

- Unbiased dispersal
- Ideal free distribution (IFD)
- Nonlocal/discrete dispersal and IFD
- Biased dispersal
- 5 Fitness-dependent dispersal

Evolution of Dispersal

 How should organisms move "optimally" in heterogeneous landscapes?

Previous works

 Levin 76; Hastings 83; Holt 85; McPeek and Holt 92; Holt and McPeek 1996; Dockery et al. 1998; Kirkland et al. 2006; Abrams 2007; Armsworth and Roughgarden 2008; Amarasekare 2010

Previous works

 Levin 76; Hastings 83; Holt 85; McPeek and Holt 92; Holt and McPeek 1996; Dockery et al. 1998; Kirkland et al. 2006; Abrams 2007; Armsworth and Roughgarden 2008; Amarasekare 2010

 Johnson and Gaines 1990; Clobert et al. 2001; Levin, Muller-Landau, Nathan and Chave 2003; Bowler and Benton 2005; Holyoak et al. 2005; Amarasekare 2008

• Game theory: John von Neumann (28), John Nash (50)

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)
- Evolutionary stable strategy (ESS): A strategy such that, if all the members of a population adopt it, no mutant strategy can invade

- Game theory: John von Neumann (28), John Nash (50)
- Evolutionary game theory: John Maynard Smith and Price (73)
- Evolutionary stable strategy (ESS): A strategy such that, if all the members of a population adopt it, no mutant strategy can invade
- Goal: To find dispersal strategies that are evolutionarily stable

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$u_t = u[m(x) - u - v] \text{ in } \Omega \times (0, \infty),$$

$$v_t = v[m(x) - u - v] \text{ in } \Omega \times (0, \infty),$$
 (1)

• u(x,t), v(x,t): densities at $x \in \Omega \subset R^N$

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$u_t = u[m(x) - u - v] \text{ in } \Omega \times (0, \infty),$$
 $v_t = v[m(x) - u - v] \text{ in } \Omega \times (0, \infty),$ (1)

- u(x,t), v(x,t): densities at $x \in \Omega \subset R^N$
- m(x): intrinsic growth rate of species

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$u_t = d_1 \Delta u + u[m(x) - u - v]$$
 in $\Omega \times (0, \infty)$,
 $v_t = d_2 \Delta v + v[m(x) - u - v]$ in $\Omega \times (0, \infty)$, (1)

- u(x,t), v(x,t): densities at $x \in \Omega \subset R^N$
- m(x): intrinsic growth rate of species
- d_1, d_2 : dispersal rates

Hastings (TPB, 83); Dockery et al. (JMB, 98)

$$u_t = d_1 \Delta u + u[m(x) - u - v]$$
 in $\Omega \times (0, \infty)$,
 $v_t = d_2 \Delta v + v[m(x) - u - v]$ in $\Omega \times (0, \infty)$, (1)
 $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$ on $\partial \Omega \times (0, \infty)$.

- u(x, t), v(x, t): densities at $x \in \Omega \subset R^N$
- m(x): intrinsic growth rate of species
- d₁, d₂: dispersal rates
- No-flux boundary condition

Hasting's approach

Suppose that species *u* is at equilibrium:

$$d_1 \Delta u^* + u^* [m(x) - u^*] = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$.

Question. Can species *v* grow when it is rare?

Hasting's approach

Suppose that species *u* is at equilibrium:

$$d_1 \Delta u^* + u^* [m(x) - u^*] = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$.

Question. Can species v grow when it is rare?

• Stability of $(u, v) = (u^*, 0)$: Let $\Lambda(d_1, d_2)$ denote the smallest eigenvalue of

$$d_2\Delta\varphi+(m-u^*)\varphi+\lambda\varphi=0\quad \text{in }\Omega,$$

$$\nabla\varphi\cdot n=0\quad \text{on }\partial\Omega.$$

Evolution of slow dispersal

Hastings (1983)

Theorem

Suppose that m(x) is non-constant, positive and continuous in $\bar{\Omega}$. Then, the sign of $\Lambda(d_1, d_2)$ is same as the sign of $d_2 - d_1$: If $d_1 < d_2$, then $(u^*, 0)$ is stable; if $d_1 > d_2$, $(u^*, 0)$ is unstable.

Evolution of slow dispersal

Hastings (1983)

Theorem

Suppose that m(x) is non-constant, positive and continuous in $\bar{\Omega}$. Then, the sign of $\Lambda(d_1, d_2)$ is same as the sign of $d_2 - d_1$: If $d_1 < d_2$, then $(u^*, 0)$ is stable; if $d_1 > d_2$, $(u^*, 0)$ is unstable.

 No dispersal rate is evolutionarily stable: Any mutant with a smaller dispersal rate can invade when rare!

Fretwell and Lucas (70)

 How should organisms distribute themselves in heterogeneous habitat?

- How should organisms distribute themselves in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat

- How should organisms distribute themselves in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat
- Assumption 2: Animals are capable of moving "freely"

- How should organisms distribute themselves in heterogeneous habitat?
- Assumption 1: Animals are "ideal" in assessment of habitat
- Assumption 2: Animals are capable of moving "freely"
- Prediction: Animals aggregate proportionately to the amount of resources

Ideal free distribution (IFD)

• Milinski (79)

Ideal free distribution (IFD)

Milinski (79)

IFD and Dispersal

 Holt and Barfield (01), On the relationship between the ideal-free distribution and the evolution of dispersal

IFD and Dispersal

 Holt and Barfield (01), On the relationship between the ideal-free distribution and the evolution of dispersal

Krivan, Cressman and Schneider (08), The ideal free distribution:
 A review and synthesis of the game-theoretic perspective

Logistic model

$$u_t = d\Delta u + u [m(x) - u] \quad \text{in } \Omega \times (0, \infty)$$

$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

Logistic model

$$u_t = d\Delta u + u [m(x) - u] \quad \text{in } \Omega \times (0, \infty)$$

$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

• If u(x,0) is positive, $u(x,t) \rightarrow u^*(x)$ as $t \rightarrow \infty$

Logistic model

$$u_t = d\Delta u + u [m(x) - u] \quad \text{in } \Omega \times (0, \infty)$$

$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(3)

- If u(x,0) is positive, $u(x,t) \rightarrow u^*(x)$ as $t \rightarrow \infty$
- Does u reach an IFD at equilibrium? That is,

$$\frac{m(x)}{u^*(x)} = constant?$$

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0 \quad \text{in } \Omega,$$
(4)

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$

• No ideal free distribution: $m/u^* \not\equiv \text{constant}$.

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$

• No ideal free distribution: $m/u^* \not\equiv \text{constant}$. Integrating (4) in Ω ,

$$\int_{\Omega} u^*(m-u^*)=0.$$

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$

• No ideal free distribution: $m/u^* \not\equiv \text{constant}$. Integrating (4) in Ω ,

$$\int_{\Omega} u^*(m-u^*)=0.$$

If m/u^* were a constant, then $m \equiv u^*$.

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
$$\frac{\partial u^*}{\partial n} = 0$$
 on $\partial \Omega$ (4)

• No ideal free distribution: $m/u^* \not\equiv \text{constant}$. Integrating (4) in Ω ,

$$\int_{\Omega} u^*(m-u^*)=0.$$

If m/u^* were a constant, then $m \equiv u^*$. By (4),

$$\Delta m = 0$$
 in Ω , $\nabla m \cdot n = 0$ on $\partial \Omega$,

which implies that *m* must be a constant. Contradiction!

Two competing species

Dockery et al. (98)

$$u_t = d_1 \Delta u + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,
 $v_t = d_2 \Delta v + v(m - u - v)$ in $\Omega \times (0, \infty)$, (5)
 $\frac{\partial u}{\partial p} = \frac{\partial v}{\partial p} = 0$ on $\partial \Omega \times (0, \infty)$.

Two competing species

Dockery et al. (98)

$$u_t = d_1 \Delta u + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,
 $v_t = d_2 \Delta v + v(m - u - v)$ in $\Omega \times (0, \infty)$, (5)
 $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$ on $\partial \Omega \times (0, \infty)$.

Theorem

If $d_1 < d_2$, $(u^*, 0)$ is globally asymptotically stable.

Two competing species

Dockery et al. (98)

$$u_t = d_1 \Delta u + u(m - u - v)$$
 in $\Omega \times (0, \infty)$,
 $v_t = d_2 \Delta v + v(m - u - v)$ in $\Omega \times (0, \infty)$, (5)
 $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$ on $\partial \Omega \times (0, \infty)$.

Theorem

If $d_1 < d_2$, $(u^*, 0)$ is globally asymptotically stable.

• Evolution of slow dispersal: Why?

Logistic model

(6)

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
 $\frac{\partial u^*}{\partial n} = 0$ on $\partial \Omega$.

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
$$\frac{\partial u^*}{\partial n} = 0$$
 on $\partial \Omega$.

It can be shown that

$$\lim_{d\to 0}\frac{m(x)}{u^*(x)}=1.$$

Logistic model

$$d\Delta u^* + u^*(m(x) - u^*) = 0$$
 in Ω ,
$$\frac{\partial u^*}{\partial n} = 0$$
 on $\partial \Omega$. (6)

It can be shown that

$$\lim_{d\to 0}\frac{m(x)}{u^*(x)}=1.$$

• The smaller d is, the closer m/u^* to constant; i.e., the distribution of the species is closer to IFD for smaller dispersal rate

IFD and ESS

Question: Can we find evolutionarily stable dispersal strategies?

IFD and ESS

Question: Can we find evolutionarily stable dispersal strategies?

 Idea: Find dispersal strategies which can produce ideal free distribution and show that they are evolutionarily stable

Cantrell, Cosner, L (MBE, 10)

Cantrell, Cosner, L (MBE, 10)

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u]$$
 in $\Omega \times (0, \infty)$

Cantrell, Cosner, L (MBE, 10)

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] \quad \text{in } \Omega \times (0, \infty)$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on } \partial\Omega \times (0, \infty)$$
(7)

Cantrell, Cosner, L (MBE, 10)

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] \quad \text{in } \Omega \times (0, \infty)$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on } \partial\Omega \times (0, \infty)$$
(7)

• $P(x) = \ln m(x)$ can produce ideal free distribution

• If $P(x) = \ln m(x)$, then $u \equiv m$ is a positive solution of

• If $P(x) = \ln m(x)$, then $u \equiv m$ is a positive solution of

$$d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in } \Omega$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on } \partial \Omega$$
(8)

• If $P(x) = \ln m(x)$, then $u \equiv m$ is a positive solution of

$$d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \quad \text{in } \Omega$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \quad \text{on } \partial \Omega$$
(8)

• Ideal free distribution: $m \equiv u$

• If $P(x) = \ln m(x)$, then $u \equiv m$ is a positive solution of

$$d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \text{ in } \Omega$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \text{ on } \partial \Omega$$
(8)

- Ideal free distribution: $m \equiv u$
- No net movement ("Balanced dispersal", McPeek and Holt 1992):

$$\nabla u - u \nabla P = \nabla m - m \nabla (\ln m) = 0$$

• If $P(x) = \ln m(x)$, then $u \equiv m$ is a positive solution of

$$d_1 \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \text{ in } \Omega$$

$$[\nabla u - u \nabla P(x)] \cdot n = 0 \text{ on } \partial \Omega$$
(8)

- Ideal free distribution: $m \equiv u$
- No net movement ("Balanced dispersal", McPeek and Holt 1992):

$$\nabla u - u \nabla P = \nabla m - m \nabla (\ln m) = 0$$

• Is the strategy $P = \ln m$ an ESS?

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla P] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla P] + u(m - u - v)$$
 in $\Omega \times (0, \infty)$

$$v_t = d_2 \nabla \cdot [\nabla v - v \nabla Q] + v(m - u - v)$$
 in $\Omega \times (0, \infty)$

$$u_{t} = d_{1}\nabla \cdot [\nabla u - u\nabla P] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$v_{t} = d_{2}\nabla \cdot [\nabla v - v\nabla Q] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$[\nabla u - u\nabla P] \cdot n = [\nabla v - v\nabla Q] \cdot n = 0 \quad \text{on } \partial\Omega \times (0, \infty)$$
(9)

$$u_{t} = d_{1} \nabla \cdot [\nabla u - u \nabla P] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$v_{t} = d_{2} \nabla \cdot [\nabla v - v \nabla Q] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty)$$
(9)

• If $P = \ln m$, (m, 0) is a steady state.

$$u_{t} = d_{1}\nabla \cdot [\nabla u - u\nabla P] + u(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$v_{t} = d_{2}\nabla \cdot [\nabla v - v\nabla Q] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty)$$

$$[\nabla u - u\nabla P] \cdot n = [\nabla v - v\nabla Q] \cdot n = 0 \quad \text{on } \partial\Omega \times (0, \infty)$$
(9)

- If $P = \ln m$, (m, 0) is a steady state.
- Is (m, 0) asymptotically stable? (\Leftrightarrow Is $P = \ln m$ an ESS?)

Original system:

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla \ln m] + u(m - u - v),$$

$$v_t = d_2 \nabla \cdot [\nabla v - v \nabla Q] + v(m - u - v).$$
(10)

Original system:

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla \ln m] + u(m - u - v),$$

$$v_t = d_2 \nabla \cdot [\nabla v - v \nabla Q] + v(m - u - v).$$
(10)

• Perturbation of (m(x), 0):

$$(u, v) = (m, 0) + (\epsilon \varphi(x)e^{-\lambda t}, \epsilon \psi(x)e^{-\lambda t})$$

Original system:

$$u_t = d_1 \nabla \cdot [\nabla u - u \nabla \ln m] + u(m - u - v),$$

$$v_t = d_2 \nabla \cdot [\nabla v - v \nabla Q] + v(m - u - v).$$
(10)

• Perturbation of (m(x), 0):

$$(u, v) = (m, 0) + (\epsilon \varphi(x)e^{-\lambda t}, \epsilon \psi(x)e^{-\lambda t})$$

• Equations for (φ, ψ, λ) :

$$d_{1}\nabla \cdot [\nabla \varphi - \varphi \nabla \ln m] - m\varphi - m\psi = -\lambda \varphi,$$

$$d_{2}\nabla \cdot [\nabla \psi - \psi \nabla Q] = -\lambda \psi.$$
(11)

◆□▶◆□▶◆□▶◆□▶ ■ 夕久で

• Eigenvalue problem for the stability of (m, 0):

$$- d_2 \nabla \cdot [\nabla \psi - \psi \nabla Q] = \lambda \psi \quad \text{in } \Omega,$$

$$[\nabla \psi - \psi \nabla \mathbf{Q}] = \mathbf{0} \quad \text{on } \partial \Omega.$$

• Eigenvalue problem for the stability of (m, 0):

$$- d_2 \nabla \cdot [\nabla \psi - \psi \nabla Q] = \lambda \psi \quad \text{in } \Omega,$$

$$[\nabla \psi - \psi \nabla Q] = 0 \quad \text{on } \partial \Omega.$$

• $(\lambda, \psi) = (0, e^Q)$ is a solution

• Eigenvalue problem for the stability of (m, 0):

$$- d_2 \nabla \cdot [\nabla \psi - \psi \nabla Q] = \lambda \psi \quad \text{in } \Omega,$$

$$[\nabla \psi - \psi \nabla Q] = 0 \quad \text{on } \partial \Omega.$$

- $(\lambda, \psi) = (0, e^Q)$ is a solution
- Bad news: Zero is the smallest eigenvalue; i.e., (m,0) is neutrally stable

Evolutionary stable strategy

Cantrell et. al (10); Averill, Munther, L (JBD, 2012)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, is non-constant and positive in $\bar{\Omega}$. If $P = \ln m$ and $Q - \ln m$ is non-constant, then (m, 0) is globally stable.

P = Inm is an ESS:

It can resist the invasion of any other strategy

Evolutionary stable strategy

Cantrell et. al (10); Averill, Munther, L (JBD, 2012)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, is non-constant and positive in $\bar{\Omega}$. If $P = \ln m$ and $Q - \ln m$ is non-constant, then (m, 0) is globally stable.

P = lnm is an ESS:

- It can resist the invasion of any other strategy
- It can displace any other strategy

Proof

Proof

Define

$$E(t) = \int_{\Omega} \left[u(x,t) + v(x,t) - m(x) \ln u(x,t) \right] dx.$$

Then dE/dt < 0 for all t > 0.

Proof

Define

$$E(t) = \int_{\Omega} \left[u(x,t) + v(x,t) - m(x) \ln u(x,t) \right] dx.$$

Then $dE/dt \le 0$ for all $t \ge 0$.

Three or more competing species: Gejji et al. (BMB 2012);
 Munther and L. (DCDS-A 2012)

Other dispersal strategies which can produce ideal free distribution:

(Mark Lewis)

$$u_t = d\Delta \left(\frac{u}{m}\right) + u[m(x) - u] \tag{12}$$

Other dispersal strategies which can produce ideal free distribution:

(Mark Lewis)

$$u_t = d\Delta \left(\frac{u}{m}\right) + u[m(x) - u] \tag{12}$$

(Dan Ryan)

$$u_t = d\nabla \cdot \left[mf(m, m) \nabla \left(\frac{u}{m} \right) \right] + u[m(x) - u], \tag{13}$$

where $f(m(x_1), m(x_2))$ is the probability moving from x_1 to x_2 which satisfies

$$D_2 f(m,m) - D_1 f(m,m) = \frac{f(m,m)}{m}.$$

Cosner, Davilla and Martinez (JBD, 11)

$$u_t = \int_{\Omega} k(x, y) u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u]$$
 (14)

Cosner, Davilla and Martinez (JBD, 11)

$$u_t = \int_{\Omega} k(x, y) u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u]$$
 (14)

• Definition: k(x, y) is an ideal free dispersal strategy if

$$\int_{\Omega} k(x,y)m(y)\,dy=m(x)\int_{\Omega} k(y,x)\,dy,\quad x\in\Omega. \tag{15}$$

Cosner, Davilla and Martinez (JBD, 11)

$$u_t = \int_{\Omega} k(x, y) u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u]$$
 (14)

• Definition: k(x, y) is an ideal free dispersal strategy if

$$\int_{\Omega} k(x,y)m(y)\,dy=m(x)\int_{\Omega} k(y,x)\,dy,\quad x\in\Omega. \tag{15}$$

• Example: $k(x, y) = m^{\tau}(x)m^{\tau-1}(y)$.

Cosner, Davilla and Martinez (JBD, 11)

$$u_t = \int_{\Omega} k(x, y) u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u]$$
 (14)

• Definition: k(x, y) is an ideal free dispersal strategy if

$$\int_{\Omega} k(x,y)m(y)\,dy=m(x)\int_{\Omega} k(y,x)\,dy,\quad x\in\Omega. \tag{15}$$

- Example: $k(x, y) = m^{\tau}(x)m^{\tau-1}(y)$.
- m(x) is an equilibrium of (14) $\Leftrightarrow k(x, y)$ satisfies (15).

◆□▶ ◆□▶ ◆□▶ ◆■▶ ○■ のQ®

Two species model

Cantrell, Cosner, L and Ryan (Canadian Appl. Math. Quart., in press)

$$u_{t} = \int_{\Omega} k(x, y)u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u - v],$$

$$v_{t} = \int_{\Omega} k^{*}(x, y)v(y, t) dy - v(x, t) \int_{\Omega} k^{*}(y, x) dy + v[m(x) - u - v].$$
(16)

Two species model

Cantrell, Cosner, L and Ryan (Canadian Appl. Math. Quart., in press)

$$u_{t} = \int_{\Omega} k(x, y) u(y, t) dy - u(x, t) \int_{\Omega} k(y, x) dy + u[m(x) - u - v],$$

$$v_{t} = \int_{\Omega} k^{*}(x, y) v(y, t) dy - v(x, t) \int_{\Omega} k^{*}(y, x) dy + v[m(x) - u - v].$$
(16)

Theorem

Suppose that both k and k^* are continuous and positive in $\bar{\Omega} \times \bar{\Omega}$, k is an ideal free dispersal strategy and k^* is not an ideal dispersal strategy. Then, (m(x),0) of (16) is globally stable in $C(\bar{\Omega}) \times C(\bar{\Omega})$ for all positive initial data.

26 / 44

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \to [0, \infty)$ be a continuous function. Then the following two statements are equivalent:

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \to [0, \infty)$ be a continuous function. Then the following two statements are equivalent:

A key ingredient

Let $h: \bar{\Omega} \times \bar{\Omega} \to [0,\infty)$ be a continuous function. Then the following two statements are equivalent:

Discrete models

Discrete-space and continuous-time model

$$\frac{du_{ki}}{dt} = \sum_{j=1}^{n} \left(d_{ij}^{k} u_{kj} - d_{ji}^{k} u_{ki} \right) + u_{ki} f_{i} \left(\sum_{l=1}^{m} u_{li} \right), \quad t > 0, \quad (17)$$

it can also shown that ideal free dispersal strategies are evolutionary stable and can displace all other strategies; See Cantrell, Cosner, L., JMB, 2012

Discrete models

Discrete-space and continuous-time model

$$\frac{du_{ki}}{dt} = \sum_{j=1}^{n} \left(d_{ij}^{k} u_{kj} - d_{ji}^{k} u_{ki} \right) + u_{ki} f_{i} \left(\sum_{l=1}^{m} u_{li} \right), \quad t > 0, \quad (17)$$

it can also shown that ideal free dispersal strategies are evolutionary stable and can displace all other strategies; See Cantrell, Cosner, L., JMB, 2012

 Discrete-time and discrete-space models: Ideal free dispersal strategies may not be able to displace other non-ideal free dispersal strategies; Kirkland, Li and Schreiber, SIAP 2006.

Summary

Summary

 Dispersal strategies which produce ideal free distribution are generally ESS (Holt and Barfield, 2001)

Summary

 Dispersal strategies which produce ideal free distribution are generally ESS (Holt and Barfield, 2001)

 What happens if dispersal strategies can not produce ideal free distribution?

 Biased dispersal: Organisms can sense and respond to local environmental cues

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u) \text{ in } \Omega \times (0, \infty),$$

- Biased dispersal: Organisms can sense and respond to local environmental cues
- Belgacem and Cosner (Canadian Appl. Math Quart. 1995)

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u) \text{ in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(18)

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \text{ in } \Omega \times (0, \infty),$$

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \text{ in } \Omega \times (0, \infty),$$

 $v_t = d_2 \Delta v + v(m - u - v) \text{ in } \Omega \times (0, \infty),$

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] + u(m - u - v) \text{ in } \Omega \times (0, \infty),$$

$$v_t = d_2 \Delta v + v(m - u - v) \text{ in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha \mathbf{u} \nabla \mathbf{m}] \cdot n = \nabla v \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)$$
(19)

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant.

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant. If $d_1 = d_2$, $\alpha > 0$ small and Ω is convex, $(u^*, 0)$ is globally stable

Weak advection

Cantrell, Cosner and L. (Proc. Roy Soc. Edin, 07)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant. If $d_1 = d_2$, $\alpha > 0$ small and Ω is convex, $(u^*, 0)$ is globally stable

• For some non-convex Ω and m(x), $(0, v^*)$ is globally stable

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant.

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant. For any d_1 and d_2 , if α is large, both $(u^*,0)$ and $(0,v^*)$ are unstable, and system (19) has a stable positive steady state.

Cantrell et al. (07); Chen, Hambrock, L (JMB, 08)

Theorem

Suppose that $m \in C^2(\bar{\Omega})$, positive, non-constant. For any d_1 and d_2 , if α is large, both $(u^*,0)$ and $(0,v^*)$ are unstable, and system (19) has a stable positive steady state.

Strong advection can induce coexistence of competing species

Theorem

Let (u, v) be a positive steady state of system (19). As $\alpha \to \infty$, $v(x) \to v^*$ and

$$u(x) = e^{-\alpha[m(x_0) - m(x)]} \cdot \left\{ 2^{\frac{N}{2}} \left[m(x_0) - v^*(x_0) \right] + o(1) \right\},\,$$

where x_0 is a local maximum of m such that $m(x_0) - v^*(x_0) > 0$.

Theorem

Let (u, v) be a positive steady state of system (19). As $\alpha \to \infty$, $v(x) \to v^*$ and

$$u(x) = e^{-\alpha[m(x_0) - m(x)]} \cdot \left\{ 2^{\frac{N}{2}} \left[m(x_0) - v^*(x_0) \right] + o(1) \right\},\,$$

where x_0 is a local maximum of m such that $m(x_0) - v^*(x_0) > 0$.

 Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum

Theorem

Let (u, v) be a positive steady state of system (19). As $\alpha \to \infty$, $v(x) \to v^*$ and

$$u(x) = e^{-\alpha[m(x_0) - m(x)]} \cdot \left\{ 2^{\frac{N}{2}} \left[m(x_0) - v^*(x_0) \right] + o(1) \right\},\,$$

where x_0 is a local maximum of m such that $m(x_0) - v^*(x_0) > 0$.

- Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum
- Lam and Ni (DCDS-A, 10): *m* finite many local maxima, *N* = 1

Theorem

Let (u, v) be a positive steady state of system (19). As $\alpha \to \infty$, $v(x) \to v^*$ and

$$u(x) = e^{-\alpha[m(x_0) - m(x)]} \cdot \left\{ 2^{\frac{N}{2}} \left[m(x_0) - v^*(x_0) \right] + o(1) \right\},$$

where x_0 is a local maximum of m such that $m(x_0) - v^*(x_0) > 0$.

- Chen and L (Indiana Univ. Math J, 08): m has a unique local maximum
- Lam and Ni (DCDS-A, 10): m finite many local maxima, N = 1
- Lam (SIMA, 12): m finite many local maxima, N ≥ 1

Yuan Lou (Ohio State) EDM. Miami 2012 34/44

Consider

$$u_{t} = d_{1} \nabla \cdot [\nabla u - \alpha u \nabla m] + u(m - u - v) \text{ in } \Omega \times (0, \infty),$$

$$v_{t} = d_{2} \nabla \cdot [\nabla v - \beta v \nabla m] + v(m - u - v) \text{ in } \Omega \times (0, \infty),$$

$$[\nabla u = u \nabla m] = n \cdot [\nabla u - \beta v \nabla m] + n \cdot (0, \infty),$$
(20)

 $[\nabla u - \alpha u \nabla m] \cdot n = [\nabla v - \beta v \nabla m] \cdot n = 0 \text{ on } \partial\Omega$

<u>Question</u>. If $d_1 = d_2$, can we find some advection rate which is evolutionarily stable?

Hasting's approach revisited

Suppose that species *u* is at equilibrium:

$$d_1 \nabla \cdot [\nabla u^* - \alpha u^* \nabla m] + u^* [m(x) - u^*] = 0 \quad \text{in } \Omega,$$

$$[\nabla u^* - \alpha u^* \nabla m] \cdot n = 0 \quad \text{on } \partial \Omega.$$
(21)

Question. Can species *v* grow when it is rare?

Hasting's approach revisited

Suppose that species *u* is at equilibrium:

$$d_1 \nabla \cdot [\nabla u^* - \alpha u^* \nabla m] + u^* [m(x) - u^*] = 0 \quad \text{in } \Omega,$$

$$[\nabla u^* - \alpha u^* \nabla m] \cdot n = 0 \quad \text{on } \partial \Omega.$$
(21)

Question. Can species v grow when it is rare?

• Stability of $(u, v) = (u^*, 0)$: Let $\Lambda(\alpha, \beta)$ denote the smallest eigenvalue of

$$d_1 \nabla \cdot [\nabla \varphi - \beta \varphi \nabla m] + (m - u^*) \varphi + \lambda \varphi = 0 \quad \text{in } \Omega,$$
$$[\nabla \varphi - \beta \varphi \nabla m] \cdot n = 0 \quad \text{on } \partial \Omega.$$

ESS

Question: Is there an ESS? That is, there exists some $\alpha^* > 0$ such that

$$\Lambda(\alpha^*, \beta) > 0, \quad \forall \beta \neq \alpha^*$$

(Hambrock and L., BMB 2009) Suppose $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

(Hambrock and L., BMB 2009) Suppose $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

• If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta, \beta + \delta)$, $(u^*, 0)$ is globally asymptotically stable.

(Hambrock and L., BMB 2009) Suppose $\Omega=(0,1)$, and $m_x>0$ on [0,1].

- If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta, \beta + \delta)$, $(u^*, 0)$ is globally asymptotically stable.
- If $\beta > 1/\min_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta \delta, \beta)$, $(u^*, 0)$ is globally asymptotically stable.

(Hambrock and L., BMB 2009) Suppose $\Omega = (0, 1)$, and $m_x > 0$ on [0, 1].

- If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta, \beta + \delta)$, $(u^*, 0)$ is globally asymptotically stable.
- If $\beta > 1/\min_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta \delta, \beta)$, $(u^*, 0)$ is globally asymptotically stable.
- The species with the stronger advection wins the competition if both advection rates are small, but loses if both advection rates are large.

(Hambrock and L., BMB 2009) Suppose $\Omega=(0,1)$, and $m_x>0$ on [0,1].

- If $\beta < 1/\max_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta, \beta + \delta)$, $(u^*, 0)$ is globally asymptotically stable.
- If $\beta > 1/\min_{\overline{\Omega}} m$, there exists $\delta > 0$ such that for $\alpha \in (\beta \delta, \beta)$, $(u^*, 0)$ is globally asymptotically stable.
- The species with the stronger advection wins the competition if both advection rates are small, but loses if both advection rates are large.
- Some ESS $\alpha^* \in \left(\frac{1}{\max_{\overline{\Omega}} m}, \frac{1}{\min_{\overline{\Omega}} m}\right)$?

K.-Y. Lam and L. (2012)

Theorem

Suppose that Ω is convex and

$$\|\nabla \operatorname{In}(m)\|_{L^{\infty}} \leq \frac{\alpha_0}{\operatorname{diam}(\Omega)},$$

where $\alpha_0 \approx 0.814$, then for $d_1 = d_2$ small, there exists a unique $\hat{\alpha} > 0$ such that if $\alpha = \hat{\alpha}$, $\beta \neq \hat{\alpha}$ and $\beta \approx \hat{\alpha}$, $(u^*, 0)$ is asymptotically stable.

This theorem fails for some functions *m* satisfying

$$\frac{\max_{\bar{\Omega}} m}{\min_{\bar{\Omega}} m} > 3 + 2\sqrt{2}.$$

 Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- C. Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008)

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- C. Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008)

$$u_t = d\nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u})] + u(m - u) \text{ in } \Omega \times (0, \infty),$$

- Dispersal up the gradient of fitness: Armsworth and Roughgarden 2005, 2008; Abrams 2007; Amarasekare 2010
- C. Cosner (TPB 2005); Cantrell, Cosner, L. (JDE 2008)

$$u_t = d\nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u})] + u(m - u) \text{ in } \Omega \times (0, \infty),$$

$$[\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u})] \cdot \mathbf{n} = 0 \text{ on } \partial \Omega \times (0, \infty)$$

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u} - \mathbf{v})] + u(m - u - v),$$

$$u_t = d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u} - \mathbf{v})] + u(m - u - v),$$

 $v_t = d_2 \Delta v + v(m - u - v) \text{ in } \Omega \times (0, \infty),$

$$\begin{split} u_t &= d_1 \nabla \cdot [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u} - \mathbf{v})] + u(m - u - v), \\ v_t &= d_2 \Delta v + v(m - u - v) & \text{in } \Omega \times (0, \infty), \\ [\nabla u - \alpha \mathbf{u} \nabla (\mathbf{m} - \mathbf{u} - \mathbf{v})] \cdot n &= \nabla v \cdot n = 0 & \text{on } \partial \Omega \times (0, \infty). \end{split}$$

Evolution of two traits: Gejji et al, BMB, 2012

- Evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012

- Evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012
- Spectral theory for evolution of dispersal: L. Altenberg, PNAS 2012

- Evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012
- Spectral theory for evolution of dispersal: L. Altenberg, PNAS 2012
- Multi-trophic level models: X.-F. Wang and Y.-P. Wu 2002; D. DeAngelis et al. Am. Nat, 2011; Wu and L, SIAP 2011

- Evolution of two traits: Gejji et al, BMB, 2012
- Directed movement in periodic environment: Kawasaki et al., BMB, 2012
- Spectral theory for evolution of dispersal: L. Altenberg, PNAS 2012
- Multi-trophic level models: X.-F. Wang and Y.-P. Wu 2002; D. DeAngelis et al. Am. Nat, 2011; Wu and L, SIAP 2011
- Evolution of dispersal in stochastic environments: Evans et al. JMB 2012; S. Schreiber, Am. Nat, in press

Acknowledgment

Collaborators:

- Steve Cantrell, Chris Cosner (University of Miami)
- Isabel Averill, Richard Hambrock
- Xinfu Chen (University of Pittsburgh)
- King-Yeung Lam (MBI)
- Dan Munther (York University)
- Dan Ryan (NIMBioS)

Acknowledgment

Collaborators:

- Steve Cantrell, Chris Cosner (University of Miami)
- Isabel Averill, Richard Hambrock
- Xinfu Chen (University of Pittsburgh)
- King-Yeung Lam (MBI)
- Dan Munther (York University)
- Dan Ryan (NIMBioS)

Support:

NSF, Mathematical Biosciences Institute

$$\frac{\partial u}{\partial t} = d\nabla^2 u + ru(1-u),$$

$$\frac{\partial u}{\partial t} = d\nabla^2 u + ru(1-u),$$

Happy Birthday, Chris!

