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Homogeneous Environment - Constant Coefficients

Logistic equation (ODE)

ut = u(a− u)

where a > 0 is a constant: carrying capacity/resources.
With spatial variables (PDE){

ut = d∆u + u(a− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ),

where d > 0, u = u(x , t) and Ω is a bounded smooth domain in RN ;

∆ =
N∑

i=1

∂2

∂x2
i

; ∂ν =
∂

∂ν
, and ν is the unit outer normal on ∂Ω.

Fact: The unique steady state (s.s.) u ≡ a is globally asymptotically
stable (g.a.s.).
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Heterogeneous Environment

In a heterogeneous environment m(x) ≥ 0, nonconstant{
ut = d∆u + u(m(x)− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ).

Fact: For every d > 0, there exists unique positive s.s. θd (or θd ,m).
Moreover, θd is globally asymp. stable (g.a.s.).

Observe that [Lou, 2006]

0 = d
∫

Ω
|∇θd |2
θ2

d
+
∫

Ω m −
∫

Ω θd

⇒
∫

Ω
θd >

∫
Ω

m(x) ∀d > 0, since θd 6≡ const .
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i.e. the total population is always greater than the total carrying
capacity!

Moreover,
∫

Ω θd →
∫

Ω m(x) as d → 0 or∞, since

θd →

{
m as d → 0,
m := 1

|Ω|
∫

Ω m as d →∞.

What is the value maxd>0
∫

Ω θd?
Where is maxd>0

∫
Ω θd assumed?
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Discussions: Effectiveness of Spatial Heterogeneity
and Fitness in terms of Diffusion Rate

Question: How does spatial concentration/variation of resources
affect properties of solutions? Is larger variation/concentration
”better” or ”worse”?

Define E(m) = supd>0 θd/m.

Question: Is E(m) bounded above indep of m? If so, what is the
optimal bound?

Question: Is it possible that, for some m and d , θd (x) > m(x),
everywhere in x ∈ Ω ? What characterizes those m′s and d ′s?

(These questions have profound impacts on competition systems.)
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Lotka-Volterra Competition

Lotka-Volterra competition system (ODE):{
Ut = U(a1 − b1U − c1V ) in (0,T ),
Vt = V (a2 − b2U − c2V ) in (0,T ).

ai : carrying capacity / intrinsic growth rate;
b1, c2: intra-specific competition;
b2, c1: inter-specific competition
are all positive constants.
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”Slower diffuser always prevails!”


Ut = d1∆U + U(m(x)− U − V ) in Ω× (0,T )

Vt = d2∆V + V (m(x)− U − V ) in Ω× (0,T )

∂νU = ∂νV = 0 on ∂Ω× (0,T )

U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω.

If d1 < d2, then (U,V )→ (θd1 ,0) as t →∞ regardless of U0,V0
(as long as U0 6≡ 0,V0 6≡ 0) [Dockery, Hutson, Mischaikow and
Pernarowski (1998)]
“Slower diffuser always prevails!”
Here m(x) 6≡ constant is crucial!
Open: If more than 2 competing species involved, it is not known
if the slowest diffuser would prevail.
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Weak Competition in Heterogeneous Environment
Consider special case m1 ≡ m2:

d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(Here, assume b1 = c2 = 1 by rescaling.)

Theorem (Lou; JDE (2006))
Suppose m1(x) = m2(x) ≥ 0. Then ∀b ∈ (b∗,1), there exists c ∈ (0,1]
small such that if c ∈ (0, c), (θd1 ,0) is globally asymp stable for some

d1 < d2, where b∗ = inf
d>0

∫
Ω

m
/∫

Ω
θd .

In particular, for some 0 < b, c < 1 and d1,d2, U will wipe out V , and
co-existence is no longer possible even when the competition is weak!
A remarkable theorem!
Open: What happens when c is not small?
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Directions to Explore

[Hutson, Lopez-Gomez, Mischaikow, Vickers;1995], [Cantrell-Cosner,
2003 (book)], [Lou, 2008 (survey)], ...

(Q1): The effect of spatial concentration/variation: What if
m1(x) 6≡ m2(x) but still with

∫
Ω m1 =

∫
Ω m2?

Ut = d1∆U + U(m1(x)− U − V ) in Ω× (0,T )

Vt = d2∆V + V (m2(x)− U − V ) in Ω× (0,T )

∂νU = ∂νV = 0 on ∂Ω× (0,T )

U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω;

(Q2): More fundamentally, the effect of spatial heterogeneity:
What if m1 6≡ const but m2(x) ≡ const and

∫
Ω m1 =

∫
Ω m2? i.e.

spatial heterogeneity vs homogeneity ;

(Q3): The effect of competition abilities: What if the inter-specific
competition coefficients are not 1 any more?

The rest of this talk is based on my joint work with Xiaoqing He.
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Principal Eigenvalue
{

∆ϕ+ λh(x)ϕ = 0 in Ω,

∂νϕ = 0 on ∂Ω,

where h 6≡ const , could change sign in Ω. λ is a principal eigenvalue if
there is a positive solution. (Note: 0 is always a principal eigenvalue.)

Lemma
The problem has a nonzero principal eigenvalue λ1 = λ1(h) iff h
changes sign and

∫
Ω h 6= 0. More precisely, if h changes sign, then

1
∫

Ω h = 0⇔ 0 is the only principal eigenvalue.
2
∫

Ω h > 0⇔ λ1(h) < 0.
3
∫

Ω h < 0⇔ λ1(h) > 0.
4 λ1(h1) > λ1(h2) if h1 ≤ h2, h1 6≡ h2, and h1,h2 both change sign.
5 λ1(h) is continuous in h; i.e. λ1(h`)→ λ1(h) if h` → h in L∞(Ω).
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Spatial Concentration/Variation

Let ρm be the unique solution of{
∆ρ+ m(m(x)−m) = 0 in Ω,∫

Ω ρ = 0, ∂νρ = 0 on ∂Ω.

Set
C(m) = minΩ ρm +

∫
Ω |∇ρm|2/(m2|Ω|)

C(m) - A measure for spatial concentration/variation?
(LC): C(m) > 0⇒ θd ,m −m > 0 for all d large
(SC): C(m) < 0⇒ θd ,m −m changes sign for all d > 0
maxΩ m ≤ 2m⇒ C(m) < 0
For step function m = τχ[0,(1/τ)], we have C(m) > 0⇔ τ > 3
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Q2: Homogeneity vs Heterogeneity

(Q2): More fundamentally, the effect of spatial heterogeneity: What if
m1 6≡ const but m2(x) ≡ const and

∫
Ω m1 =

∫
Ω m2?

i.e. spatial
heterogeneity vs homogeneity.

Consider, for simplicity, denote m1 by m, and m2 ≡ m = 1,
Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 12 / 36



Q2: Homogeneity vs Heterogeneity

(Q2): More fundamentally, the effect of spatial heterogeneity: What if
m1 6≡ const but m2(x) ≡ const and

∫
Ω m1 =

∫
Ω m2? i.e. spatial

heterogeneity vs homogeneity.

Consider, for simplicity, denote m1 by m, and m2 ≡ m = 1,
Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 12 / 36



Q2: Homogeneity vs Heterogeneity

(Q2): More fundamentally, the effect of spatial heterogeneity: What if
m1 6≡ const but m2(x) ≡ const and

∫
Ω m1 =

∫
Ω m2? i.e. spatial

heterogeneity vs homogeneity.

Consider, for simplicity, denote m1 by m, and m2 ≡ m = 1,
Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 12 / 36
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(0,1) is ALWAYS unstable.
Blue curve separates locally
(linearly) stable and unstable
regions for (θd1,m,0).
Limits of blue curve: Tends to
∞ as d1 → 0, and hits 0 (and
terminates) at some finite d1.
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Q2: m 6≡ 1 = m & (SC): C(m) < 0
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Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

(0,1) is ALWAYS unstable.
Blue curve separates locally
(linearly) stable and unstable
regions for (θd1,m,0).
Limits of blue curve: it is∞ as
d1 → 0, and 0 as d1 →∞.
(θd1,m,0) is globally asymp.
stable for all (d1,d2) in
(D1,∞)× (c/D1,∞).
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Q2: m 6≡ 1 = m


Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Yellow region denotes stable
co-existence s.s.
Red arrows are directions of
limits for s.s.
m = inf

Ω
m.

Ω̃+(−) = {m > (<)1}
(assuming |{m = 1}| = 0).
For d1 large, U tends to
dominate, regardless.
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Q2: m 6≡ 1 = m


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Q2: m 6≡ 1 = m


Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,
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Figure : (m −m,m)

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 21 / 36



Q2: Homogeneity vs Heterogeneity m 6≡ 1 = m
Ut = d1∆U + U(m(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (1− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Recap:

Heterogeneous m(x) seems ”superior” to homogeneous ones.
For U with heterogeneous m(x), the larger the concentration (of
m(x)), the better!
For U with heterogeneous m(x), the larger the diffusion rate d1,
the better!
(This seems interesting, especially compared to ”Slower diffuser
always prevails!” )
On the other hand, for any d1 fixed, (θd1,m,0) is globally asymp
stable for all d2 large; i.e. U still prevails if d2 is large.
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Proof of lim
d2→∞

lim
d1→0+

(Ud1,d2,Vd1,d2) = (m −m,m)

Step I: limd1→0+(Ud1,d2 ,Vd1,d2) := (U0,d2 ,V0,d2), where

‖V0,d2‖L∞(Ω) > inf
Ω

m,

for any d2 > 0.

For, otherwise, as d1 → 0

equation for U ⇒ U0,d2 = m − V0,d2 ,

equation for V ⇒ 1− Ud1,d2 − Vd1,d2 → (1−m) uniformly on Ω̄.

However, again by equation for V , as d1 → 0,

d−1
2 = λ1(1− Ud1,d2 − Vd1,d2)→ λ1(1−m) = 0,

a contradiction (since d2 is arbitrary but fixed and finite so far).
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Step I: limd1→0+(Ud1,d2 ,Vd1,d2) := (U0,d2 ,V0,d2), where

‖V0,d2‖L∞(Ω) > inf
Ω

m.

Step II: lim
d2→∞

lim
d1→0+

(Ud1,d2 ,Vd1,d2) = (m − ξ, ξ), for some

0 ≤ ξ ≤ inf
Ω

m.

Since lim
d2→∞

lim
d1→0+

(Ud1,d2 ,Vd1,d2) = (U0,∞,V0,∞), where V0,∞ ≡ ξ ≥ 0,

we have
U0,∞ = (m − ξ)+ and

∫
Ω(1− (m − ξ)+ − ξ) = 0.

Thus m = 1⇒ ξ ≤ inf
Ω

m.

Since Step I ⇒ ξ ≥ inf
Ω

m, lim
d2→∞

lim
d1→0+

Vd1,d2 = inf
Ω

m ≡ m.
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Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

The blue curve separates
(locally) linearly stable and
unstable regions for (θd1,m1 ,0).
Limits of blue curve: Both are
∞ when d1 → 0 or∞.
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∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

The two white regions are
disjoint and never touch each
other!
Yellow region denotes stable
co-existence s.s.
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U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Red arrows denote directions
of limits for s.s.
mi = inf

Ω
mi , i = 1,2.

Ω+(−) = {m1 > (<)m2}
(assuming |{m1 = m2}| = 0).

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 27 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Red arrows denote directions
of limits for s.s.

mi = inf
Ω

mi , i = 1,2.

Ω+(−) = {m1 > (<)m2}
(assuming |{m1 = m2}| = 0).

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 27 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Red arrows denote directions
of limits for s.s.
mi = inf

Ω
mi , i = 1,2.

Ω+(−) = {m1 > (<)m2}
(assuming |{m1 = m2}| = 0).

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 27 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Red arrows denote directions
of limits for s.s.
mi = inf

Ω
mi , i = 1,2.

Ω+(−) = {m1 > (<)m2}
(assuming |{m1 = m2}| = 0).

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 27 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Figure : (m1χΩ+ ,m2χΩ−)

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 28 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Figure : (m1χΩ+ ,m2χΩ−)

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 29 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Figure : (m2,m2 −m2)

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 30 / 36



Q1: m1 6≡ m2 &
∫

Ω m1 =
∫

Ω m2


Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

Figure : (m2,m2 −m2)

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion December 15, 2012 31 / 36



Recap:
Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,

I. m1 ≡ m2 ≡ m; II. m1 6≡ m2,m1 = m2; III. m1 = 1 ≡ m2.
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Stability of (θd1,m1,0)
Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+,

U(x ,0) = U0(x), V (x ,0) = V0(x) in Ω,
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limd1→∞ λ1(m2 − θd1,m1) = 0, limd1→∞ λ1(1− θd1,m) =∞. Why?
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Linearized eigenvalue problem

We first observe the 1st eigenvalue of{
d∆ψ + h(x)ψ + µψ = 0 in Ω
∂νψ = 0 on ∂Ω

is given by

µ1(d ,h) = inf
ψ∈H1(Ω)

{∫
Ω[d |∇ψ|2 − h(x)ψ2]∫

Ω ψ
2

}

Lemma
(a) µ1(d ,h) is strictly ↑ in d and, h(x) 	 k(x)⇒ µ1(d ,h) < µ1(d , k).
(b) limd→0 µ1(d ,h) = minΩ̄(−h) and limd→∞ µ1(d ,h) = −h̄

Note: µ1(d ,h) = 0⇔ d = 1/λ1(h)
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Sketch of Proofs
Ut = d1∆U + U(m1(x)− U − V ) in Ω× R+,

Vt = d2∆V + V (m2(x)− U − V ) in Ω× R+,

∂νU = ∂νV = 0 on ∂Ω× R+.

Linearize the system at (θd1,m1 ,0):


d1∆Ψ1 + Ψ1(m1 − 2θd1,m1)− θd1,m1Ψ2 + λΨ1 = 0 in Ω
d2∆Ψ2 + Ψ2(m2 − θd1,m1) + λΨ2 = 0 in Ω
∂νΨ1 = ∂νΨ2 = 0 on ∂Ω.

(L1)

Let µ1(d2,m2 − θd1,m1) be the 1st eigenvalue of

d2∆ψ + ψ(m2 − θd1,m1) + µψ = 0 in Ω, ∂νψ = 0 on ∂Ω. (S1)

Claim: Stability of (L1) = stability of (S1).
Thus led to the region d2 > 1/λ1(m2 − θd1,m1) in Case II,
while in Case III(m1 = m,m2 ≡ 1), d2 > 1/λ1(1− θd1,m).
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Sketch of Proofs
limd1→∞ λ1(m2 − θd1,m1) = 0, limd1→∞ λ1(1− θd1,m) =∞.

Recall property of λ1(·):
∫

Ω h = 0⇔ 0 is the only principal
eigenvalue; λ1(h) is continuous in h.
Notation: θ := θd1,m, λ1 := λ1(1− θd1,m).

∆ϕ+ λ1 · (1− θ)ϕ = 0 in Ω, ∂νϕ = 0 on ∂Ω,

d1∆θ + (m − θ)θ = 0 in Ω, ∂νθ = 0 on ∂Ω.

0 =
∫

Ω |∇ϕ|
2 + λ1

∫
Ω(θ − 1)ϕ2

=
∫

Ω |∇ϕ|
2 + λ1

∫
Ω(θ − θ̄)(ϕ− ϕ̄)(ϕ+ ϕ̄) + λ1

∫
Ω(θ̄ − m̄)ϕ2

>
∫

Ω |∇ϕ|
2 − λ1‖ϕ+ϕ̄‖∞

2

∫
Ω[(θ − θ̄)2 + (ϕ− ϕ̄)2] + λ1d1ϕ2

‖m‖2
∞

∫
Ω |∇θ|

2

> (1− λ1C‖ϕ+ϕ̄‖∞
2 )

∫
Ω |∇ϕ|

2 + λ1( d1ϕ2

‖m‖2
∞
− C‖ϕ+ϕ̄‖∞

2 )
∫

Ω |∇θ|
2

> 0,

if λ1 → λ∗ ∈ [0,∞), since ϕ, ϕ̄→ const (chosen suitably small)
uniformly on Ω̄. Contradiction! Thus limd1→∞ λ1(1− θd1,m) =∞.
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