Invasion speed and LTRE analysis in stochastic environments

Hal Caswell¹ Michael Neubert¹

¹Biology Department Woods Hole Oceanographic Institution

Everything Disperses to Miami

(ロ) (同) (三) (三) (三) (○) (○)

Invasion speed

Environment	Scalar populations	Structured populations
Constant	$c^* = \min_{s} \left\{ \frac{1}{s} \log \lambda M(s) \right\}$	$c^* = \min_{s} \left\{ \frac{1}{s} \log \rho_1 \left[\mathbf{H}(s) \right] \right\}$
Periodic	$\overline{c}^* = \frac{1}{p} \min_{s} \left\{ \frac{1}{s} \log \left(\prod_{i=1}^{p} \lambda_i m_i(s) \right) \right\}$	$\overline{c}^* = \frac{1}{p} \min_{s} \left\{ \frac{1}{s} \log \rho_{\text{per}} \left[\mathbf{H}_p(s) \cdots \mathbf{H}_1(s) \right] \right\}$
Stochastic	$\overline{c}^* = \min_{s} \left\{ \frac{1}{s} E\left[\log\left(\lambda m(s)\right) \right] \right\}$	$\bar{c}^* = \min_s \left(\frac{1}{s} \log \rho_{stoch}\right)$
		$= \min_{s} \left\{ \frac{1}{s} \lim_{T \to \infty} \frac{1}{T} \log \ \mathbf{H}_{T}(s) \cdots \mathbf{H}_{1}(s)\mathbf{w}\ \right\}$

Structured integrodifference equation

$$\mathbf{n}(x,t+1) = \int_{-\infty}^{\infty} \left(\mathbf{K}_t(x-y) \circ \mathbf{B}_t[\mathbf{n}(y,t)] \right) \mathbf{n}(y,t) \, dy,$$

and its linearization

$$\mathbf{n}(x,t+1) = \int_{-\infty}^{\infty} \left(\mathbf{K}_t(x-y) \circ \mathbf{A}_t \right) \mathbf{n}(y,t) \, dy.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Invasion speed

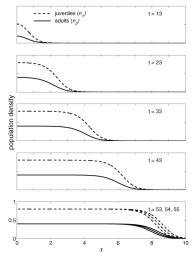
$$c^* = \min_{s>0} \left(\frac{1}{s}\log\rho(s)\right)$$

where $\rho(s)$ is a growth-rate, based on both demographic and dispersal information.

$$\mathbf{H}(s) = \mathbf{A} \circ \mathbf{M}(s)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Invasion speed: constant environments



Neubert and Caswell 2000

Moment-generating matrix $\mathbf{M}(s)$:

$$m_{ij}(s) = \int_{-\infty}^{\infty} k_{ij}(x) e^{sx} \, dx$$

Define:

$$\begin{aligned} \mathbf{A} &= \mathbf{B}(0) \\ \mathbf{H}(s) &= \mathbf{A} \circ \mathbf{M}(s) \\ \rho(s) &= \text{ largest eigenvalue of } \mathbf{H}(s) \end{aligned}$$

Invasion speed:

$$c^* = \min_{s} \left\{ \frac{1}{s} \ln \rho(s) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Invasion speed

Environment	Scalar populations	Structured populations
Constant	$c^* = \min_{s} \left\{ \frac{1}{s} \log \lambda M(s) \right\}$	$c^* = \min_{s} \left\{ \frac{1}{s} \log \rho_1 \left[\mathbf{H}(s) \right] \right\}$
Periodic	$\overline{c}^* = \frac{1}{p} \min_{s} \left\{ \frac{1}{s} \log \left(\prod_{i=1}^{p} \lambda_i m_i(s) \right) \right\}$	$\overline{c}^* = \frac{1}{p} \min_{s} \left\{ \frac{1}{s} \log \rho_{\text{per}} \left[\mathbf{H}_p(s) \cdots \mathbf{H}_1(s) \right] \right\}$
Stochastic	$\overline{c}^* = \min_{s} \left\{ \frac{1}{s} E\left[\log\left(\lambda m(s)\right) \right] \right\}$	$\bar{c}^* = \min_s \left(\frac{1}{s} \log \rho_{stoch}\right)$
		$= \min_{s} \left\{ \frac{1}{s} \lim_{T \to \infty} \frac{1}{T} \log \ \mathbf{H}_{T}(s) \cdots \mathbf{H}_{1}(s)\mathbf{w}\ \right\}$

Stochastic invasion references

• H. Caswell, M. G. Neubert, and C.M. Hunter. 2011. Demography and dispersal: invasion speeds and sensitivity analysis in periodic and stochastic environments.

Theoretical Ecology 4:407–421

 S. J. Schreiber & M. E. Ryan. 2011. Invasion speeds for structured populations in fluctuating environments.

Theoretical Ecology 4:423–434.

• S.P. Ellner and S.J. Schreiber. Temporally variable dispersal and demography can accelerate the spread of invading species. Theoretical Population Biology.

Sensitivity analysis: general

Let

$\theta =$ parameter vector

Sensitivity of c^*

$$\frac{dc^*}{d\theta^{\mathsf{T}}} = \frac{1}{s^*} \frac{d\log\rho}{d\theta^{\mathsf{T}}}.$$

Elasticity of c^*

$$\frac{\epsilon c^*}{\epsilon \boldsymbol{\theta}^{\mathsf{T}}} = \left(\frac{1}{c^*}\right) \; \frac{dc^*}{d\boldsymbol{\theta}^{\mathsf{T}}} \; \mathcal{D}(\boldsymbol{\theta})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $\mathcal{D}(\boldsymbol{\theta})$ is a matrix with $\boldsymbol{\theta}$ on the diagonal

Sensitivity analysis: constant environment

 $\rho(s^*) = \max \operatorname{eig} \mathbf{H}(s^*)$

Let w and v be the right and left eigenvectors of $H(s^*)$

$$\begin{aligned} \frac{d\log\rho}{d\theta^{\mathsf{T}}} &= \frac{1}{\rho} \left(\mathbf{w}^{\mathsf{T}} \otimes \mathbf{v}^{\mathsf{T}} \right) \frac{d\mathsf{vec}\,\mathbf{H}(s^*)}{d\theta^{\mathsf{T}}} \\ \frac{d\mathsf{vec}\,\mathbf{H}(s^*)}{d\theta^{\mathsf{T}}} &= \mathcal{D}(\mathsf{vec}\,\mathbf{A}) \frac{d\mathsf{vec}\,\mathbf{M}(s^*)}{d\theta^{\mathsf{T}}} + \mathcal{D}(\mathsf{vec}\,\mathbf{M}(s^*)) \frac{d\mathsf{vec}\,\mathbf{A}}{d\theta^{\mathsf{T}}} \end{aligned}$$

Sensitivity analysis: periodic environment

$$c^* = \min_{s} \left(\frac{1}{s} \log \rho_{\text{per}}(s) \right)$$

$$\rho_{\text{per}} = \max \operatorname{eig} \left(\mathbf{H}_p \cdots \mathbf{H}_1 \right)$$

$$\frac{d\log\rho_{\rm per}}{d\boldsymbol{\theta}^{\rm T}} = \left(\frac{\mathbf{w}^{\rm T}\otimes\mathbf{v}^{\rm T}}{\rho_{\rm per}}\right)\sum_{i=1}^{p}\frac{\partial{\rm vec}\,\mathbf{H}}{\partial{\rm vec}^{\rm T}\mathbf{H}_{i}}\left.\frac{d{\rm vec}\,\mathbf{H}_{i}}{d\boldsymbol{\theta}^{\rm T}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{i}},$$

with

$$\frac{\partial \mathsf{vec}\,\mathbf{H}}{\partial \mathsf{vec}\,^{\mathsf{T}}\mathbf{H}_{i}} = \begin{cases} \mathbf{I} \otimes (\mathbf{H}_{p}\cdots\mathbf{H}_{2}) & i = 1\\ (\mathbf{H}_{i-1}\cdots\mathbf{H}_{1})^{\mathsf{T}} \otimes (\mathbf{H}_{p}\cdots\mathbf{H}_{i+1}) & 1 < i < p\\ (\mathbf{H}_{p-1}\cdots\mathbf{H}_{1})^{\mathsf{T}} \otimes \mathbf{I} & i = p \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Sensitivity analysis: stochastic environment

$$\log \rho_{\text{stoch}} = \lim_{T \to \infty} \frac{1}{T} \log \|\mathbf{H}_{T-1}(s) \cdots \mathbf{H}_0(s) \mathbf{w}\|$$

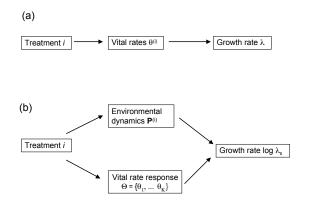
Tuljapurkar's formula

$$\frac{d\log\rho_{\text{stoch}}}{d\theta^{\mathsf{T}}} = \frac{1}{T} \sum_{i=0}^{T-1} \frac{[\mathbf{w}^{\mathsf{T}}(i) \otimes \mathbf{v}^{\mathsf{T}}(i+1)]}{R_i \mathbf{v}^{\mathsf{T}}(i+1) \mathbf{w}(i+1)} \frac{d\mathsf{vec}\,\mathbf{H}_i}{d\theta^{\mathsf{T}}} \tag{1}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Retrospective perturbation analysis

Goal: to decompose differences among "treatments" into contributions from effects on each of the parameters defining the problem.



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Aust. N.Z. J. Stat. 47(1), 2005, 75-85

SENSITIVITY ANALYSIS OF THE STOCHASTIC GROWTH RATE: THREE EXTENSIONS †

HAL CASWELL¹

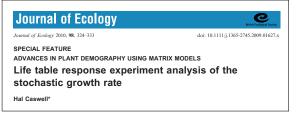
Woods Hole Oceanographic Institution, Massachusetts

Theor Ecol DOI 10.1007/s12080-010-0091-z

ORIGINAL PAPER

Demography and dispersal: invasion speeds and sensitivity analysis in periodic and stochastic environments

Hal Caswell · Michael G. Neubert · Christine M. Hunter



Determinants of invasion speed

- environmental states 1,..., k
- environmental state dynamics

$$\mathbf{P} = \mathsf{Pr}\left(u(t+1) = i | u(t) = j\right)$$

demographic responses

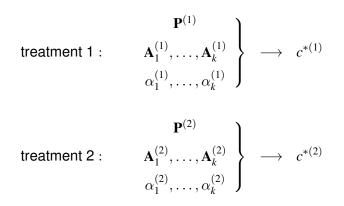
$$\mathbf{A}_1,\ldots,\mathbf{A}_k$$

dispersal responses

 α_1,\ldots,α_k

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Decomposing differences



▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

LTRE: the basic idea

$$y_1 = y(\boldsymbol{\theta}_1)$$

$$y_2 = y(\boldsymbol{\theta}_2)$$

Then

$$y_2 - y_1 \approx \frac{dy}{d\theta^{\mathsf{T}}} \left(\theta_2 - \theta_1 \right)$$

Contributions:

$$C(\boldsymbol{\theta}) = \left(\frac{dy}{d\boldsymbol{\theta}^{\mathsf{T}}}\right)^{\mathsf{T}} \circ (\boldsymbol{\theta}_2 - \boldsymbol{\theta}_1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Environment-specific sensitivity

Indicator variable

$$J_t(h) = \left\{egin{array}{cc} 1 & u(t) = h \ 0 & ext{otherwise} \end{array}
ight.$$

$$\left. \frac{dc^*}{d\theta^{\mathsf{T}}} \right|_{u=h} = \left. \frac{1}{s^*} \left. \frac{d\log \rho_{\text{stoch}}}{d\theta^{\mathsf{T}}} \right|_{u=h} \right.$$

$$= \frac{1}{s^*} \frac{1}{T} \sum_{i=0}^{T-1} \frac{J_i(h) \left[\mathbf{w}^{\mathsf{T}}(i) \otimes \mathbf{v}^{\mathsf{T}}(i+1) \right]}{R_i \mathbf{v}^{\mathsf{T}}(i+1) \mathbf{w}(i+1)} \frac{d\mathsf{vec} \, \mathbf{H}_i}{d\boldsymbol{\theta}^{\mathsf{T}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Environment-specific sensitivities

Use this to get

$$\frac{dc^*}{d\text{vec}\,{}^{\mathsf{T}}\mathbf{A}}\bigg|_{u=h} \quad \text{and} \quad \frac{dc^*}{d\alpha^{\mathsf{T}}}\bigg|_{u=h}$$
for $h = 1, \dots, k$.

But what about contributions from the environment (P)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kitagawa-Keyfitz demcomposition

Suppose

$$egin{array}{rll} c^{*(1)} &=& c^{*}[a,b] \ c^{*(2)} &=& c^{*}[A,B]. \end{array}$$

Then

$$C(A - a) = (1/2) (c^*[A, B] - c^*[a, B]) + (1/2) (c^*[A, b] - c^*[a, b])$$
$$C(B - b) = (1/2) (c^*[A, B] - c^*[A, b]) + (1/2) (c^*[a, B] - c^*[a, b]).$$

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ ◎ ◆ ◆ ○ ◆

Decomposition of effect of environmental dynamics

Let $\boldsymbol{\Theta}$ be the combination of demographic and dispersal parameters.

Kitigawa-Keyfitz decomposition

$$C(\mathbf{P}) = 0.5 \left(c^* \left[\mathbf{P}^{(2)}, \mathbf{\Theta}^{(1)} \right] - c^* \left[\mathbf{P}^{(1)}, \mathbf{\Theta}^{(1)} \right] \right. \\ \left. + \left[\mathbf{P}^{(2)}, \mathbf{\Theta}^{(2)} \right] - c^* \left[\mathbf{P}^{(1)}, \mathbf{\Theta}^{(2)} \right] \right)$$

Decompose into contributions from the *frequency* differences and the effects of *autocorrelation*

$$C(\mathbf{P}) = C(\mathbf{Q}) + C(\mathbf{R})$$

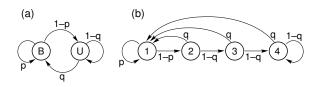
(ロ) (同) (三) (三) (三) (○) (○)

Lomatium bradshawii

・ロト ・四ト ・ヨト ・ヨト ・ヨ

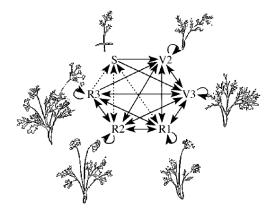
Caswell, H. and T. Kaye. Stochastic demography and conservation of Lomatium bradshawii in a dynamic fire regime. Advances in Ecological Research 32:1-51

Environment



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Demography



< □ > < @ > < 注

A made-up example

Demography

$$\mathbf{A}_1, \dots, \mathbf{A}_4 = \mathbf{F}$$
isher Butte with extra fertility
 $\mathbf{A}_1, \dots, \mathbf{A}_4 = \mathbf{R}$ ose Prairie

Dispersal

Environment

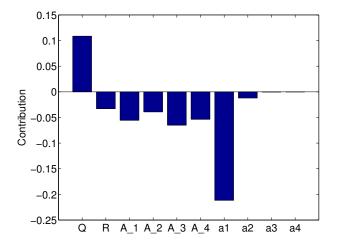
Invasion speed

$$c^{*(1)} = 0.57$$
 $c^{*(2)} = 0.18$ $\Delta c^* = -0.4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Contributions

$$c^{*(2)} - c^{*(1)} = -0.4$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Step by step

- 1. Decompose environmental differences using the Kitagawa-Keyfitz decomposition.
- 2. Compute contributions of the aggregate demography and dispersal differences using Kitagawa-Keyfitz.
- 3. Use environment-specific derivatives of *c** to get contributions from each demographic parameter and each dispersal parameter in each environment.

(日) (日) (日) (日) (日) (日) (日)

Data requirements

In each environmental state, under two or more "treatments", need data on:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Markovian environmental dynamics
- 2. stage-structured demography
- 3. stage-specific dispersal kernels

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●