University of Miami, Everything Disperses to Miami, December 14, 2012

Spread of fleshy-fruited exotic shrubs when dispersal is structured by dispersers that vary over time

Carol C. Horvitz Anthony Koop² and Kelley Erickson University of Miami^{*}, Coral Gables, FL

²Current address: Department of Plant Protection and Quarantine, USDA, Chapel Hill, North Carolina * Department of Biology and Institute of Theoretical and Mathematical Ecology

...Welcome to life under our little subtropical patch of clouds

Latitude: Subtropical 26° N

Temperature: Cool mo: 26° C Hot mo: 33° C

Substrate: Oolitic limestone

Rainfall: Wet mo: 230 mm Dry mo: 33 mm

Floods, fires, hurricanes, The Army Corps of Engineers

Seedlings seen at point x at a certain time, where did they come from?

Seeds are produced Itravel germinate

Main issues

How do different animals contribute to population spread?

How would permanent changes in disperser assemblages affect population spread?

How does temporal variation in disperser assemblage affect population spread?

Two population processes

- population change in numbers
- population change in space occupied

Two types of dynamic models in a structured world population change in numbers Population projection matrix population change in space occupied Dispersal kernels for each dispersing stage

Two population parameters in a structured constant world λ

- projection matrix analysis of a matrix of growth, survival and reproduction
- c*, wavespeed

analysis of integrodifference equation model based on analysis of a matrix that combines growth, survival and reproduction with movement

Neubert and Caswell 2000

Two population parameters in a structured random world λ_s

Population projection with temporal variation = random matrix product analysis
Tuljapurkar 1982, 1990

c*s, wavespeed

 analysis of integrodifference equation model with temporal variation = random matrix product ellner and Schreiber 2012

Stage-Structured Integrodifference Model with Temporal Variation

Ardisia elliptica (Myrsinaceae)

- Tropical understory shrub
- Native to SE Asia
- Naturalized in Hawaii, Southern Florida, Okinawa and Jamaica.
- Can survive and reproduce under low light levels
- Tolerate high densities

Biotic Dispersal

Eastern Grey Catbird Dumetella carolinensis Common Raccoon Procyon lotor American Robin *Turdus migratorius*

Study Location: Everglades National Park, Florida

Everglades National Park

Courtesy South Florida Water Management District

Population projection matrix with structured dispersal

(An unstructured, composite model collapses all seeds into one stage)

							Time t					
		Drpoped	Raccoon	Cat Bird	Robin	SG	Small	Medium	Large	Pre Repro-	Small	Large
		Seed	Seed	Seed	Seed	Seedling	Juvenile	Juvenile	Juvenile	ductive	Adult	Adult
	DS	0	0	0	0	0	0	0	12.20	36.59	52.62	90.03
	RacS	0	0	0	0	0	0	0	0.69	2.08	2.99	5.12
	CatS	0	0	0	0	0	0	0	16.01	48.03	69.08	118.18
	RobS	0	0	0	0	0	0	0	0.00	0.00	0.00	0.00
Time	SG	0.15	0.15	0.15	0.15	0.312	0	0	0	0	0	0
<i>t</i> + 1	SJ	0	0	0	0	0.624	0.738	0.034	0	0	0	0
	MJ	0	0	0	0	0	0.24	0.517	0	0	0	0
	LJ	0	0	0	0	0	0.004	0.172	0.167	0	0	0
	PR	0	0	0	0	0	0.009	0.276	0.5	0	0	0
	SA	0	0	0	0	0	0	0	0.333	1	0.7	0.017
	LA	0	0	0	0	0	0	0	0	0	0.3	0.978

"*Schinus* Thicket population of 1999"

low density abandoned farmland site, 5.4 individuals m⁻²

Adpated from Koop and Horvitz 2005 (Ecology 86:2661-2672),

Matrix of moment-generating functions, from matrix of dispersal kernels

(An unstructured, composite model collapses all seeds into one stage)

							Time t					
		Drpoped	Raccoon	Cat Bird	Robin	SG	Small	Medium	Large	Pre Repro-	Small	Large
		Seed	Seed	Seed	Seed	Seedling	Juvenile	Juvenile	Juvenile	ductive	Adult	Adult
	DS	1	1	1	1	1	1	1	1	1	1	1
	RacS	1	1	1	1	1	1	1	m1(s)	m1(s)	m1(s)	<i>m1(s)</i>
	CatS	1	1	1	1	1	1	1	m2(s)	m2(s)	m2(s)	<i>m</i> 2(s)
	RobS	1	1	1	1	1	1	1	m3(s)	m3(s)	m3(s)	<i>m3(s)</i>
Time	SG	1	1	1	1	1	1	1	1	1	1	1
<i>t</i> + 1	SJ	1	1	1	1	1	1	1	1	1	1	1
	MJ	1	1	1	1	1	1	1	1	1	1	1
	LJ	1	1	1	1	1	1	1	1	1	1	1
	PR	1	1	1	1	1	1	1	1	1	1	1
	SA	1	1	1	1	1	1	1	1	1	1	1
	LA	1	1	1	1	1	1	1	1	1	1	1

the Gaussian dispersal kernel (which fit our data),

has moment generating function

 $m(s)=exp(((\alpha^*s)/2)^2),$

 α is related to mean dispersal distance and is estimated from data

- Jim Clark:
 - Developed a program that takes account of locations of adults and of seedlings
 - And estimates dispersal kernel parameters

Estimating the Dispersal Kernel: spatially referenced counts of adults and seedlings

- Mapped individuals (app. 100m X 90m)
- Grid size was 1 m²
- Classified plants into
 5 stage classes
 - Seedlings, Juveniles, Pre-Reproductives, Small Adults, & Large Adults

All Adults

All Inds

Dispersal kernels from field data

Bird Dispersed (Isolated Seedlings) We mapped ALL individuals in 100 x 90 m grid **Composite 48,703 seedlings** Gravity 20,543 seedlings 27,019 seedlings Catbird 1,141 seedlings Raccoon Mammal Dispersed

(Seedlings in clusters)

Gaussian dispersal kernel parameter α estimated for composite, catbirds and raccoons

Composite vs Disperser-specific Dispersal Kernel parameters

	Composite	Raccoon	Catbird
α	15.3	77.0	18.5
mean dispersal			
distance, m	13.6	68.2	16.4

Robin dispersal kernel parameter based loosely on related bluebirds

Non- Gaussian mode between 70 and 170 m

We guesstimated a Gaussian mean of ~133 m

Levey et al. 2008

Composite vs Disperser-specific Dispersal Kernel parameters

	Composite	Raccoon	Catbird	Robin
α	15.3	77.0	18.5	150.0
mean dispersal				
distance, m	13.6	68.2	16.4	132.9

Main issues

How do different animals contribute to population spread?

How would permanent changes in disperser assemblages affect population spread?

How does temporal variation in disperser assemblage affect population spread?

Simulation: effects on c^* of permanent changes in biotic dispersal

Christmas Bird Count : Long Pine Key, Everglades National Park, Florida

Main issues

How do different animals contribute to population spread?

How would permanent changes in disperser assemblages affect population spread?

How does temporal variation in disperser assemblage affect population spread?

Transitions among years with differing amounts of robins based on Christmas Bird Count : Long Pine Key, Everglades National Park, Florida

			Time t		
		No robins	Robins	More r	obins
Time	No robins	0.57	0.9999	0.05	
<i>t</i> + 1	Robins	0.29	0.0001	0.95	
	More robins	0.14	0	0	

Robins =10% of avian dispersed seeds taken by robins More robins = 30% of avian dispersed seeds taken by robins

Comparison of wavespeeds among dispersal models

Model	Rate of spread, m/yr		
Constant composite (ignore disperser structure)	3.9		
Constant disperser structured (many catbirds, no robins, few raccoons)	<mark>11.4</mark>		
Constant disperser structured (no robins, shift from catbird to raccoon)	17.9		
Constant disperser structured (shift from catbirds to robins, few raccoons)	34.7		
Time varying disperser structured (occassional robins)	21.6		

Note: Population growth rate was the same for all models, $\lambda = 1.6244$, $\lambda_s = 1.6244$

Conclusions

Structured dispersal matters

Ignoring it underestimates the influence of rare longdistance dispersers

Temporal variability causes distinct effects from within year

Future: Kelley Erickson will be working on stochastic spread of exotics vs natives

Schinus terebinthifolius Brazilian Pepper Invasive

llex cassine Dahoon Holly Native

Thanks!

- Everglades National Park for research permits (No: 1999125 and 2000107)
- NCEAS "Demography and Dispersal Synthesis Working Group" (2001-2002)
- Hal Caswell, Mike Neubert, James Clark, Janneke HilleRisLambers, Brian Beckage for inspiration and code
- "Ecology-236" students at Umiami
- Ellner, Schreiber for stochastic wavespeed inspiration and model

Extra slides in case of questions.

The dispersal kernel is created from the spatially referenced counts by a statistical model

 $b_i =$ size of each adult (where size predicts reproduction)

- α = Dispersion parameter estimated by statistical model
- β = scaling parameter estimated by statistical model (turns probability density into numbers of seedlings)

Moment generating function

For the Gaussian dispersal kernel, the moment generating function is:

 α = Dispersion parameter estimated from data by statistical model

S = Waveshape parameter found by trial and error,

