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Abstract

I first focus on how to best describe the space of cosmological space-
times and what its essential properties are and some comments on the
dynamical behaviour revealed by studies that will be described in more
detail by John Wainwright. I will then relate this both to observations
and to anthropic issues[i.e. the possible existence of observers]. This
space includes some viable singularity free solutions which will be briefly
described, thus posing the issue of the tension between very special initial
conditions and the existence of initial singularities. I will conclude with
remarks on the issue of realised infinities in this context and the concept
of multiverses

1 Miami talks: Introduction

The overall attempt in these talks will be to consider the description and uses of
universe models and of the space of universe models in relation to (a) physical
understanding of dynamics, (b) astronomical observations, and (c) irreversible
local processes and the arrow of time. We are interested in how special our uni-
verse is - how ‘fine tuned’ initial conditions have to be to lead to this particular
universe in which we live, so our framework should relate to that issue also.

To describe universes, we must characterise the space of possibilities for
universes we choose to consider, and its controlling parameters. Then the aim
is to determine the evolution of models in this space, in particular determining
what is special and what is generic behaviour. Thus we may usefully consider
ensembles of possible universes. There are some claims that such ensembles
are realised, indeed that ”all that can happen, happens” in a really existing
multiverse; however this intriguing proposal is hard to relate to observational
or other empirical tests. This issue is discussed by Ellis Kirchner and Stoeger
(2003).

In order that cosmology be a proper science, the observational relations im-
plied by cosmological models must be compared with astronomical observations.
This determines those solutions that can usefully be considered as viable cos-
mological models of the real universe. A major aim of the present lectures is to
point out that this class is wider than just the standard Friedmann–Lemâıtre/
Robertson–Walker (‘FLRW’) cosmologies, even though those models are very
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successful as models fo the universe; indeed those models cannot be realistic
on all scales of description, but they may also be inaccurate on large scales, or
at very early and very late times. To examine this, we need to consider the
subspace of the space of all cosmological solutions that contains models with
observational properties like those of the real universe at some stage of their
histories. Thus we are interested in the full state space of solutions, allowing us
to see how realistic models are related to each other and to higher symmetry
models, including particularly the FLRW models.

Finally if we are interested in observational relations, as required to test
if a specific model is a good model of the real universe, then it is taken for
granted that observers can exist in that universe. But this is a highly non-trivial
requirement. Hence a key question is which of the universes contemplated do
indeed allow complex structures to exist and life to evolve.

2 The Set of Possible Universes

We first consider the overall project of describing the space of space-times,
i.e. the set of possible cosmologies, relating this both to observations and to
anthropic issues (i.e. the possible existence of observers).

The basis for describing universes is contained in the structure and the dy-
namics of a space M of all possible universes m, each of which can be described
in terms of a set of states s in a state space S. Each universe in M will be char-
acterised by a set P of distinguishing parameters p, which are coordinates on
S. Some will be logical parameters, some will be numerical constants, and some
will be functions or tensor fields defined in local coordinate neighbourhoods for
s. Each universe m will evolve from its initial state to some final state according
to the dynamics operative, with some or all of its parameters varying as it does
so. The course of this evolution of states will be represented by a path in the
state space S, depending on the parametrisation of S. Thus, each such path (in
degenerate cases a point) is a representation of one of the universes m in M.
The coordinates in S will be directly related to the parameters specifying mem-
bers of M. The parameter space P has dimension N which is the dimension of
the space of models M; the space of states S has N + 1 dimensions, the extra
dimension indicating the change of each model’s states with time, characterised
by an extra parameter, e.g., the Hubble parameter H which does not distinguish
between models but rather determines what is the state of dynamical evolution
of each model. Note that N may be infinite, and indeed will be so unless we
consider only geometrically highly restricted sets of universes.

It is possible that with some parameter choices the same physical universe
m will be multiply represented by this description; thus a significant issue is
the equivalence problem – identifying which different representations might in
fact represent the same universe model. In self-similar cases we get a single
point in S described in terms of the chosen parameters P: the state remains
unchanged in terms of the chosen variables. But we can always get such variables
for any evolution, as they are just comoving variables, not necessarily indicating
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anything interesting is happening dynamically. The interesting issue is if this
invariance is true in physically defined variables, e.g., expansion normalised
variables; then physical self-similarity is occurring.

The very description of this space M of possibilities is based on an assumed
set of laws of behaviour, either laws of physics or meta-laws that determine the
laws of physics, which all universes m have in common; without this, we have
no basis for setting up its description. The detailed characterisation of this
space, and its relationship to S, will depend on the matter description used and
its behaviour. The overall characterisation of M therefore must incorporate a
description both of the geometry of the allowed universes and of the physics of
matter. Thus the set of parameters P will include both geometric and physical
parameters.

The space M has a number of important subsets, for example:

1. MFLRW – the subset of all possible exactly Friedmann-Lemâıtre-Robertson-
Walker (FLRW) universes, described by the state space SFLRW (in the case
of dust plus non-interacting radiation a careful description of this phase
space has been given by Ehlers and Rindler 1989).

2. Malmost−FLRW – the subset of all perturbed FLRW model universes.
These need to be characterised in a gauge-invariant way (see e.g. Ellis
and Bruni 1989) so that we can clearly identify those universes that are
almost-FLRW and those that are not.

3. Manthropic – the subset of all possible universes in which life emerges at
some stage in their evolution. This subset intersects Malmost−FLRW, and
may even be a subset of Malmost−FLRW, but does not intersect MFLRW

(realistic models of a life-bearing universe like ours cannot be exactly
FLRW, for then there is no structure).

4. MObservational – the subset of models compatible with current astronomical
observations. Precisely because we need observers to make observations,
this is a subset of M anthropic.

If M truly represents all possibilities for universes, as is required in order
to see how special or general a universe model is, one must have a description
that is wide enough to encompass all possibilities. It is here that major issues
arise: how do we decide what all the possibilities are? What are the limits of
possibility? What classifications of possibility are to be included? Proponents of
the multiverse idea suggest ”All that can happen happens” - all possibilities, as
characterised by our description in terms of families of parameters must occur,
and they must occur in all possible combinations. The full space M must be
large enough to represent all of these possibilities. The larger the possibility
space considered, the more fine-tuned the actual universe appears to be - for
with each extra possibility that is included in the possibility space, unless it
can be shown to relate to already existing parameters, the actual universe and
its close neighbours will live in a smaller fraction of the possibility space. For
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example if we assume General Relativity then there is only the parameter G to
measure; but if we consider scalar-tensor theories, then we have to explain why
we are so close to General Relativity now. Hence there is a tension between
including all possibilities in what we consider, and giving an explanation for
fine tuning.

2.1 Adequately Specifying Possible Anthropic Universes

When defining any ensemble of universes, possible or realised, we must specify all
the parameters which differentiate members of the ensemble from one another
at any time in their evolution. The values of these parameters may not be
known or determinable initially in many cases – some of them may only be
set by transitions that occur via processes like symmetry breaking within given
members of the ensemble. In particular, some of the parameters whose values
are important for the origination and support of life may only be fixed later in
the evolution of universes in the multiverse.

We can separate our set of parameters P for the space of all possible universes
M into different categories, beginning with the most basic or fundamental,
and progressing to more contingent and more complex categories. Ideally they
should all be independent of one another, but we will not be able to establish that
independence for each parameter, except for the most fundamental cosmological
ones. In order to categorise our parameters, we can doubly index each parameter
p in P as pj(i) such that those for j = 1 − 2 describe basic physics, for j =
3 − 5 describe the cosmology (given that basic physics), and j = 6 − 7 pertain
specifically to emergence and life (we must include the latter if we seriously
intend to address anthropic issues). Our characterisation is as follows:

1. p1(i) are the basic physics parameters within each universe, excluding
gravity - parameters characterising the basic non-gravitational laws of
physics in action, related constants such as the fine-structure constant
α, and including parameters describing basic particle properties (masses,
charges, spins, etc.) These should be logical parameters or dimensionless
parameters, otherwise one may be describing the same physics in other
units.

2. p2(i) are basic parameters describing the nature of the cosmological dy-
namics, e.g., p2(1) = 1 indicates Einstein gravity dominates, p2(1) =
2 indicates Brans-Dicke theory dominates, p2(1) = 3 indicates electro-
magnetism dominates, etc. Associated with each choice are the relevant
parameter values, e.g., p2(2) = G, p2(3) = Λ, and in the Brans-Dicke
case p2(4) = ω. If gravity can be derived from more fundamental physics
in some unified fundamental theory, these will be related to the parame-
ters p1(i); for example the cosmological constant may be determined from
quantum field theory and basic matter parameters.

3. p3(i) are cosmological parameters characterising the nature of the matter
content of a universe. These parameters encode whether radiation, bary-
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onic matter, dark matter, neutrinos, scalar fields, etc. occur, in each case
specifying the relevant equations of state and auxiliary functions needed
to determine the physical behaviour of matter (e.g. a barotropic equation
of state for a fluid and the potential function for a scalar field). These are
characterisations of physical possibilities for the macro-states of matter
arising out of fundamental physics, so the possibilities here will be related
to the parameters in p1(i). Realistic representations of the Universe will
include all the above, but simplified ensembles considered for exploratory
purposes may exclude some or many of them.

4. p4(i) are physical parameters determining the relative amounts of each
kind of matter present in the specific cosmological solutions envisaged, for
example the density parameters Ωi of various components at some specific
stage of its evolution (which then for example determine the matter to anti-
matter ratio and the entropy to baryon ratio). The matter components
present will be those characterised by p3(i).

5. p5(i) are geometrical parameters characterising the spacetime geometry
of the cosmological solutions envisaged- for example the scale factor a(t),
Hubble parameter H(t), and spatial curvature parameter k in FLRW mod-
els. These will be related to p4(i) by the gravitational equations set in
p2(i), for example the Einstein Field Equations.

6. p6(i) are parameters related to the functional emergence of complexity in
the hierarchy of structure, for example allowing the existence of chemically
complex molecules. Thus p6(1) might be the number of different types of
atoms allowed (as characterised in the periodic table), p6(2) the number
of different states of matter possible (crystal, glass, liquid, gas, plasma for
example), and p6(3) the number of different types of molecules charac-
terised in a suitable way. These are emergent properties arising out of the
fundamental physics in operation, and so are related to the parameters
set in p1(i).

7. p7(i) are biologically relevant parameters related specifically to the func-
tional emergence of life and of self-consciousness, for example p7(1) might
characterise the possibility of supra-molecular chemistry and p7(2) that
of living cells. This builds on the complexity allowed by p6(i) and relates
again to the parameter set p1(i).

It is important to note that these parameters will describe the set of pos-
sibilities we are able to characterise on the basis of our accumulated scientific
experience. The limits of our understanding are relevant here, in the relation
between what we conceive of as this space of possibilities, and what it really is.
There may be universes which we believe are possible on the basis of what we
know of physics, that may in fact not be possible. There may also be universes
which we conceive of as being impossible for one reason or another, that turn
out to be possible. And it is very likely that we simply may not be able to
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imagine or envisage all the possibilities. However this is by no means a state-
ment that “all that can occur” is arbitrary. On the contrary, specifying the set
of possible parameters determines a uniform high-level structure that is obeyed
by all universes in M.

We see, then, that a possibility space M is the set of universes (one-
parameter sets of states S) obeying the dynamics characterised by a parameter
space P, which may be considered to be the union of all allowed parameters
pj(i) for all i, j as briefly discussed above:

M = {S,P}, P = ∪i,j pj(i).

Because the parameters P determine the dynamics, the set of paths in S char-
acterising individual universes m are determined by this prescription. In some
particular envisaged ensemble, some of these parameters (‘class parameters’)
may be fixed across the ensemble, thus defining a class of universes considered,
while others (‘member parameters’) will vary across the ensemble, defining the
individual members of that class. Thus

P = Pclass∪ Pmember.

As we consider more generic ensembles, class parameters will be allowed to vary
and so will become member parameters. In an ensemble in which all that is
possible happens, all parameters will be member parameters; however that is so
hard to handle that we usually analyse sub-spaces characterised by particular
class parameters.

2.2 Cosmological Models

Having made these remarks, we now proceed making standard assumptions
about the physics, but remembering that there are wider possibilities as indi-
cated in the present discussion.

A cosmological model represents the universe at a particular scale. We will
usually assume that on large scales, space-time geometry is described by General
Relativity (but note that there are other possibilities in this regard). Then a
cosmological model is defined by specifying:

* the space-time geometry represented on some specific averaging scale and
determined by the metric gij(xk), which — because of the requirement of com-
patibility with observations — must either have some expanding Robertson–
Walker (‘RW’) geometries as a regular limit, or else be demonstrated to have
observational properties compatible with the major features of current astro-
nomical observations of the universe;

* the matter present in the universe, represented on the same averaging
scale, and its physical behaviour (the energy-momentum tensor of each matter
component, the equations governing the behaviour of each such component, and
the interaction terms between them), which must represent physically plausible
matter (ranging from early enough times to the present day, this will include
most of the interactions described by present-day physics); and
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* the interaction of the geometry and matter — how matter determines the
geometry, which in turn determines the motion of the matter. We assume this
is through the Einstein gravitational field equations (‘EFE’) given by1

Gab ≡ Rab − 1
2

R gab = Tab − Λ gab , (1)

which, because of the twice-contracted Bianchi identities, guarantee the conser-
vation of total energy-momentum

∇bG
ab = 0 ⇒ ∇bT

ab = 0 , (2)

provided the cosmological constant Λ satisfies the relation ∇aΛ = 0, i.e., it is
constant in time and space.

Together, these determine the combined dynamical evolution of the model
and the matter in it. The description must be sufficiently complete to determine

* the observational relations predicted by the model for both discrete sources
and background radiation, implying a well-developed theory of structure growth
for very small and for very large physical scales (i.e. for light atomic nuclei and
for galaxies and clusters of galaxies), and of radiation absorbtion and emission.

To be useful in an explanatory role, a cosmological model must be easy to
describe — that means they have symmetries or special properties of some kind
or other. The usual choices for the matter description will be some combination
of a fluid with a physically well-motivated equation of state, for example a
perfect fluid with specified equation of state (beware of imperfect fluids, unless
they have well-defined and motivated physical properties); a mixture of fluids,
usually with different 4-velocities; a set of particles represented by a kinetic
theory description; a scalar field φ, with a given potential V (φ) (at early times);
an electromagnetic field described by the Maxwell field equations.

2.3 Describing the Geometry of Possible Universes

2.3.1 The preferred vector field

Cosmological models are characterised by a preferred timelike vector field u : uaua =
−1, usually the fluid flow vector (Ellis 1971), but sometimes chosen for other
reasons, e.g., to fit local symmetries.n a cosmological space-time (M,g), at late
times there will be a family of preferred worldlines representing the average mo-
tion of matter at each point2 (notionally, these represent the histories of clusters
of galaxies, with associated ‘fundamental observers’); at early times there will

1Throughout this review we employ geometrised units characterised by c = 1 = 8πG/c2.
Consequently, all geometrical variables occurring have physical dimensions that are integer
powers of the dimension [ length ]. The index convention is such that space-time and spatial
indices with respect to a general basis are denoted by a, b, . . . = 0, 1, 2, 3 and α, β, . . . = 1, 2, 3,
respectively, while space-time indices in a coordinate basis are i, j, . . . = 0, 1, 2, 3.

2We are here assuming a fluid description can be used on a large enough scale [3, 6]. The
alternative is that the matter distribution is hierarchically structured at all levels or fractal,
so that a fluid description does not apply. The success of the FLRW models encourages us to
use the approach taken here.
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be uniquely defined notions of the average velocity of matter (at that time, in-
teracting gas and radiation), and corresponding preferred worldlines. In each
case their 4-velocity is

ua =
dxa

dτ
, uaua = − 1 , (3)

where τ is proper time measured along the fundamental worldlines. We assume
this 4-velocity is unique: that is, there is a well-defined preferred motion of mat-
ter at each space-time event. At recent times this is taken to be the 4-velocity
defined by the vanishing of the dipole of the cosmic microwave background ra-
diation (‘CBR’): for there is precisely one 4-velocity which will set this dipole
to zero. It is usually assumed that this is the same as the average 4-velocity
of matter in a suitably sized volume; indeed this assumption is what underlies
studies of large scale motions and the ‘Great Attractor’.

Given ua, there are defined unique projection tensors

Ua
b = −ua ub ⇒ Ua

c U c
b = Ua

b , Ua
a = 1 , Uab ub = ua , (4)

hab = gab + ua ub ⇒ ha
c hc

b = ha
b , ha

a = 3 , hab ub = 0 . (5)

The first projects parallel to the 4-velocity vector ua, and the second determines
the (orthogonal) metric properties of the instantaneous rest-spaces of observers
moving with 4-velocity ua. There is also defined a volume element for the rest-
spaces:

ηabc = ud ηdabc ⇒ ηabc = η[abc] , ηabc uc = 0 , (6)

where ηabcd is the 4-dimensional volume element (ηabcd = η[abcd], η0123 =√
| gab |).
Moreover, two derivatives are defined: the covariant time derivative ˙ along

the fundamental worldlines, where for any tensor T ab
cd

Ṫ ab
cd = ueT ab

cd;e , (7)

and the fully orthogonally projected covariant derivative 3∇̃, where for any
tensor T ab

cd
3∇̃eT

ab
cd = ha

f hb
g hp

c hq
d hr

e∇r T fg
pq , (8)

with total projection on all free indices. The tilde serves as a reminder that if ua

has non-zero vorticity, 3∇̃e is not a proper 3-dimensional covariant derivative
. Finally, we use angle brackets to denote orthogonal projections of vectors
and the orthogonally projected symmetric trace-free part of tensors: v<a> =
ha

b vb , T<ab> = [ h(a
c hb)

d − 1
3 hab hcd ] T cd;for convenience the angle brackets

are also used to denote othogonal projections of covariant time derivatives along
ua (‘Fermi derivatives’): v̇<a> = ha

b v̇b , Ṫ<ab> = [ h(a
c hb)

d − 1
3 hab hcd ] Ṫ cd .

Note that the projected time and space derivatives of Uab, hab and ηabc all
vanish.

The existence of the preferred vector field leads to a 1+3 decomposition of
all interesting physical and geometrical quantities into components relevant for
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fundnamental observers. For example the Maxwell field strength tensor Fab of
an electromagnetic field is split relative to ua into electric and magnetic field
parts by the relations

Ea = Fab ub ⇒ Eaua = 0 ,Ha =
1
2

ηabc F bc ⇒ Haua = 0 .

In analogy to Fab, the Weyl conformal curvature tensor Cabcd is split relative
to ua into ‘electric’ and ‘magnetic’ Weyl curvature parts according to

Eab = Cacbd uc ud ⇒ Ea
a = 0 , Eab = E(ab) , Eab ub = 0 ,

Hab =
1
2

ηade Cde
bc uc ⇒ Ha

a = 0 , Hab = H(ab) , Hab ub = 0 .

These represent the ‘free gravitational field’, enabling gravitational action at a
distance (tidal forces, gravitational waves), and influence the motion of matter
and radiation through the geodesic deviation equation for timelike and null vec-
tors, respectively. Together with the Ricci tensor Rab ( determined locally at
each point by the matter tensor through the EFE (1) ), these quantities com-
pletely represent the space-time Riemann curvature tensor Rabcd, which in fully
1 + 3-decomposed form becomes

Rab
cd = Rab

P cd + Rab
I cd + Rab

E cd + Rab
H cd ,

Rab
P cd =

2
3

(µ + 3p− 2Λ) u[a u[c hb]
d] +

2
3

(µ + Λ) ha
[c hb

d] ,

Rab
I cd = − 2 u[a hb]

[c qd] − 2 u[c h[a
d] q

b] − 2 u[a u[c πb]
d] + 2 h[a

[c πb]
d] ,

Rab
E cd = 4 u[a u[c Eb]

d] + 4 h[a
[c Eb]

d] ,

Rab
H cd = 2 ηabe u[c Hd]e + 2 ηcde u[a Hb]e .

2.3.2 The space-time geometry

To describe a cosmological spacetime locally we must give a description of its
(generally inhomogeneous and anisotropic) geometry via suitable parameters
p5(i). This description may be usefully given in terms of a tetrad basis as
follows (see Ellis and van Elst 1999, Wainwright and Ellis 1996, Uggla, et al.
2003):

Feature 1 : a set of local coordinates X = {xi} must be chosen in each chart
of a global atlas. This will in particular have a time coordinate t which will
be used to characterise evolution of the universe; this should be chosen in as
uniform as possible a way across all the universes considered, for example it may
be based on surfaces of constant Hubble parameter H for the preferred vector
field u.

Feature 2 : in each chart, to determine the geometry we must be given the
components E = [ei

a(xj)] of an orthonormal tetrad with the fluid flow vector
chosen as the timelike tetrad vector (a, b, c . . . are tetrad indices; four of these
components can be set to zero by suitable choice of coordinates). Together the
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coordinates and the tetrad form the reference frame

Pframe ≡ {X , E}. (9)

The metric tensor is then

ds2 = gij (xk)dxidxj = ηab ea
i(x

k) eb
j(x

l)dxidxj

where ηab is the Minkowski metric:

ηab = ea.eb = diag(−1, +1, +1,+1)

(because the tetrad is orthonormal) and eb
j(x

j) are the inverse of ei
a(xj) :

ei
a(xj)e b

i (xj) = δb
a.

Thus the metric is given by

ds2 = − (
e0

idxi
)2

+
(
e1

idxi
)2

+
(
e2

idxi
)2

+
(
e3

idxi
)2

. (10)

The basic geometric quantities used to determine the spacetime geometry
are the rotation coefficients Γa

bc of this tetrad, defined by

Γa
bc = e a

j ej
c;kek

b.

They may conveniently be given in terms of geometric quantities

Pgeometry ≡ {u̇α, θ, σαβ , ωαβ , Ωγ , aα, nαβ}. (11)

characterised as follows:

Γα00 = u̇α,

Γα0β =
1
3
θ + σαβ − ωαβ ,

Γαβ0 = εαβγΩγ ,

Γαβγ = a[αδβ]γ + εγδ[αnδ
β] +

1
2
εαβδn

γ
δ,

where u̇α is the acceleration of the fluid flow congruence, θ is its expansion,
σαβ = σ(αβ) is its shear (σb

b = 0), and ωαβ = ω[αβ] its vorticity, while nαβ =
n(αβ) and aα determine the spatial rotation coefficients (see Wainwright and
Ellis 1996, Ellis and van Elst 1999). Greek indices (with range 1 − 3) indicate
that all these quantities are orthogonal to ua. They are related by

∇aub = − u̇aub +3 ∇̃aub = − u̇aub + 1
3 Θ hab + σab + ωab .

The stated meaning for these quantities follows from the evolution equation
for a relative position vector ηa

⊥ = ha
bη

b, where ηa is a deviation vector for the
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family of fundamental worldlines, i.e. ub∇bη
a = ηb∇bu

a . Writing ηa
⊥ = δ` ea,

eaea = 1, we find the relative distance δ` obeys the propagation equation

(δ`)̇
δ`

=
1
3

Θ + (σabe
aeb) , (12)

(the generalised Hubble law), and the relative direction vector ea the propaga-
tion equation

ė<a> = (σa
b − (σcde

ced) ha
b − ωa

b) eb , (13)

giving the observed rate of change of position in the sky of distant galaxies. The
average length scale S determined by

Ṡ

S
=

1
3

Θ , (14)

so the volume of a fluid element varies as S3.Finally u̇a = ub∇bu
a is the rela-

tivistic acceleration vector, representing the degree to which the matter moves
under forces other than gravity plus inertia (which cannot be covariantly sep-
arated from each other in General Relativity: they are different aspects of the
same effect). The acceleration vanishes for matter in free fall (i.e. moving under
gravity plus inertia alone).

The Jacobi identities, Bianchi identities, and Einstein field equations can all
be written out in terms of these quantities, as can the components Eαβ , Hαβ

of the Weyl tensor (see Ellis and van Elst 1999 and the Appendix). Except
in the special cases of isotropic spacetimes and locally rotationally symmetric
spacetimes, the basis tetrad can be chosen in an invariant way so that three of
these quantities vanish and all the rest are scalar invariants.

Thus the geometry is determined by the 36 spacetime functions in the com-
bined set (E ,Pgeometry) with some chosen specification of coordinates X , with
the metric then determined by (10). For detailed dynamical studies it is often
useful to rescale the variables in terms of the expansion (see Wainwright and
Ellis 1996, Uggla et al 2003 for details). Note that the same universe may occur
several times over in this space; the equivalence problem is determining when
such multiple representations occur. We do not recommend going to a quotient
space where each universe occurs only once, as for example in the dynamical
studies of Fischer and Marsden (1979), for the cost of doing so is to destroy the
manifold structure of the space of spacetimes. It is far better to allow multiple
representations of the same universe (for example several representations of the
same Bianchi I universe occur in the Kasner ring in the space of Bianchi models,
see Wainwright and Ellis 1996) both to keep the manifold structure intact and
because then the dynamical structure becomes clearer.

Feature 3 : To determine the global structure, we need a set of composition
functions relating different charts in the atlas where they overlap, thus deter-
mining the global topology of the universe.

Together these are the parameters p5(i) needed to distinguish model states.
A particular model will be represented as a path through those states. The
nature of that evolution will be determined by the matter present.
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2.4 Describing the Physics of Possible Universes

The matter energy-momentum tensor Tab can be decomposed relative to ua in
the form

Tab = µua ub + qa ub + ua qb + p hab + πab ,

qa ua = 0 , πa
a = 0 , πab = π(ab) , πab ub = 0 ,

where µ = (Tabu
aub) is the relativistic energy density relative to ua, qa =

−Tbc ub hca is the relativistic momentum density , which is also the energy flux
relative to ua, p = 1

3 (Tabh
ab) is the isotropic pressure , and πab = Tcd hc

<a hd
b>

is the trace-free anisotropic pressure (stress).
Feature 4 : To determine the matter stress-energy tensor we must specify the

quantities
Pmatter ≡ {µ, qα, p, πab, ΦA} (15)

for all matter components present, where µ is the energy density, qα is the
momentum flux density, p is the pressure, πab = π(ab) the anisotropic pressure
(πb

b = 0), and ΦA (A = 1..Amax) is some set of internal variables sufficient
to make the matter dynamics deterministic when suitable equations of state
are added (for example these might include the temperature, the entropy, the
velocity vi of matter relative to the reference frame, some scalar fields and
their time derivatives, or a particle distribution function). These are parameters
p4(i) for each kind of matter characterised by p3(i). Some of these dynamical
quantities may vanish (for example, in the case of a ‘perfect fluid’, qα = 0,
πab = 0) and some of those that do not vanish will be related to others by the
equations of state (for example, in the case of a barotropic fluid, p = p(µ)) and
dynamic equations (for example the Klein Gordon equation for a scalar field).
The physics of the situation is in the equations of state relating these quantities;
for example, the commonly imposed restrictions

qa = πab = 0 ⇒ Tab = µua ub + p hab (16)

characterise a ‘perfect fluid’ with, in general, equation of state p = p(µ, s). If in
addition we assume that p = 0, we have the simplest case: pressure-free matter
(‘dust’ or ‘Cold Dark Matter’). Otherwise we must specify an equation of state
determining p from µ and possibly other thermodynamical variables. Whatever
these relations may be, we usually require that various energy conditions hold:
one or all of

µ > 0 , (µ + p) > 0 , (µ + 3p) > 0 , (17)

(the latter, however, being violated by scalar fields in inflationary universe mod-
els), and additionally demand the isentropic speed of sound c2

s = (∂p/∂µ)s=const

obeys

0 ≤ c2
s ≤ 1 ⇒ 0 ≤

(
∂p

∂µ

)

s=const

≤ 1 , (18)

as required for local stability of matter (lower bound) and causality (upper
bound), respectively.
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These equations of state can be used to reduce the number of variables in
P matter; when they are not used in this way, they must be explicitly stated in
a separate parameter space Peos in p3(i). In broad terms

Peos ≡ {qα = qα(µ, ΦA), p = p(µ, ΦA),
πab = πab(µ, ΦA), Φ̇A = Φ̇A(ΦA)}. (19)

Given this information the equations become determinate and we can obtain
the dynamical evolution of the models in the state space; see for example Wain-
wright and Ellis (1996), Hewitt et al (2003), Horwood et al (2003) for the case
of Bianchi models (characterised by all the variables defined above depending
on the time only) and Uggla et al (2003), Lim et al (2003) for the generic case.

Feature 5 : However more general features may vary: the gravitational con-
stant, the cosmological constant, and so on; and even the dimensions of space-
time or the kinds of forces in operation. These are the parameters Pphysics

comprising p1(i) and p2(i). What complicates this issue is that some or many of
these features may be emergent properties, resulting for example from broken
symmetries occurring as the universe evolves. Thus they may come into being
rather than being given as initial conditions that then hold for all time.

Initially one might think that considering all possible physics simply involves
choices of coupling constants and perhaps letting some fundamental constant
vary. But the issue is more fundamental than that. Taking seriously the concept
of including all possibilities in the ensembles, the space of physical parameters
Pphysics used to describe M, the parameters p2(i) might for example include a
parameter pgrav(i) such that: for i = 1 there is no gravity; for i = 2 there is
Newtonian gravity; for i = 3 general relativity is the correct theory at all energies
– there is no quantum gravity regime; for i = 4 loop quantum gravity is the
correct quantum gravity theory; for i = 5 a particular version of superstring
theory or M-theory is the correct theory.

Choices such as these will arise for all the laws and parameters of physics.
In some universes there will be a fundamental unification of physics expressible
in a basic “theory of everything”, in others this will not be so. Some universes
will be realised as branes in a higher dimensional spacetime, others will not.

2.4.1 Energy equation

It is worth commenting here that, because of the equivalence principle, there
is no agreed energy conservation equation for the gravitational field itself, nor
is there a definition of its entropy. Thus the above set of equations does not
contain expressions for gravitational energy or entropy, and the concept of en-
ergy conservation does not play the major role for gravitation that it does in
the rest of physics, neither is there any agreed view on the growth of entropy
of the gravitational field. However, energy conservation of the matter content
of space-time, expressed by the divergence equation ∇bT

ab = 0, is of course of
major importance.

If we assume a perfect fluid the energy conservation equation takes the form
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µ̇ + (µ + p)3
Ṡ

S
= 0. (20)

with a (linear) γ-law equation of state, this shows that

p = (γ − 1) µ , γ̇ = 0 ⇒ µ = M/S3γ , Ṁ = 0 . (21)

One can approximate ordinary fluids in this way with 1 ≤ γ ≤ 2 in order
that the causality and energy conditions are valid, with ‘dust’ and Cold Dark
Matter (‘CDM’) corresponding to γ = 1 ⇒ µ = M/S3 , and radiation to
γ = 4

3 ⇒ µ = M/S4.
In the case of a mixture of non-interacting matter, radiation and CDM hav-

ing the same 4-velocity, represented as a single perfect fluid, the total energy
density is simply the sum of these components: µ = µdust +µCDM +µradn. (NB:
This is only possible in universes with spatially homogeneous radiation energy
density, because the matter will move on geodesics which by the momentum
conservation equation implies 3∇̃apradn = 0 ⇔3 ∇̃aµradn = 0. This will not be
true for a general inhomogeneous or perturbed FLRW model, but will be true
in exact FLRW and orthogonal Bianchi models.)

The pressure can still be related to the energy density by a γ-law as in
(21) in this case of non-interacting matter and radiation, but γ will no longer
be constant. A scalar field has a perfect fluid energy-momentum tensor if the
surfaces {φ =const} are spacelike and we choose ua normal to these surfaces.
Then it approximates the equation of state (21) in the ‘slow-rolling’ regime, with
γ ≈ 0, and in the velocity-dominated regime, with γ ≈ 2. In the former case
the energy conditions are no longer valid, so ‘inflationary’ behaviour is possible,
which changes the nature of the attractors in the space of space-times in an
important way.

2.5 The Anthropic subset

We are interested in the subset of universes that allow intelligent life to exist.
That means we need a function on the set of possible universes that describes
the probability that life may evolve. An adaptation of the Drake equation gives
for the expected number of planets with intelligent life in any particular universe
m in an ensemble,

Nlife(m) = Ng ∗NS ∗Π ∗ F, (22)

where Ng is the number of galaxies in the model and NS the average number
of stars per galaxy, the probability that a star provides a habitat for life is
expressed by the product

Π = fS ∗ fp ∗ ne (23)

and the probability of coming into existence of life, given such a habitat, is
expressed by the product

F = fl ∗ fi. (24)
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Here fS is the fraction of stars that can provide a suitable environment for life
(they are ‘Sun-like’), fp is the fraction of such stars that are surrounded by
planetary systems, ne is the mean number of planets in each such system that
are suitable habitats for life (they are ‘Earth-like’), fl is the fraction of such
planets on which life actually originates, and fi represents the fraction of those
planets on which there is life where intelligent beings develop. The anthropic
subset of a possibility space is that set of universes for which Nlife(m) > 0.

The quantities {Ng, NS , fS , fp, ne, fl, fi} are functions of the physical and
cosmological parameters characterised above, so there will be many different
representations of this parameter set depending on the degree to which we try
to represent such interrelations.

The astrophysical issues expressed in the product Π are the easier ones to
investigate. We can in principle make a cut between those consistent with the
eventual emergence of life and those incompatible with it by considering each
of the factors in Ng, NS , and Π in turn, taking into account their dependence
on the parameters p1(i) to p5(i), and only considering the next factor if all the
previous ones are non-zero (an approach that fits in naturally with Bayesian
statistics and the successive allocation of relevant priors). In this way we can
assign ” bio-friendly intervals” to the possibility spaceM. If Ng∗NS∗Π is non-
zero we can move on to considering similarly whether F is non-zero, based on
the parameters p6(i) to p7(i) determining if true complexity is possible, which
in turn depend on the physics parameters p1(i) in a crucial way that is not
fully understood. It will be impossible at any stage to characterise that set of
the multiverse in which all the conditions necessary for the emergence of self-
conscious life and its maintenance have been met, for we do not know what those
conditions are (for example, we do not know if there are forms of life possible
that are not based on carbon and organic chemistry). Nevertheless it is clear
that life demands unique combinations of many different parameter values that
must be realised simultaneously. When we look at these combinations, they will
span a very small subset of the whole parameter space.

2.6 Parameter space revisited

It is now clear that some of the parameters discussed above are dependent on
other ones, so that while we can write down a more or less complete set at
varying levels of detail they will in general not be an independent set. There
is a considerable challenge here: to find an independent set. Inter alia
this involves solving both the initial value problem for general relativity and
the way that galactic and planetary formation depend on fundamental physics
constants (which for example determine radiation transfer properties in stars
and in proto-planetary gas clouds), as well as relations there may be between
the fundamental constants and the way the emergent complexity of life depends
on them. We are a long way from understanding all these issues; allowing
the cosmological parameters to vary simultaneously can change the predictions
enormously. This means we can provide necessary sets of parameter values but
cannot guarantee completeness or independence.
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3 Exact solutions: FLRW models

A particularly important involutive subspace is that of the Friedmann–Lema ı̂tre
(‘FL’) universes, the standard models of cosmology, based on the everywhere-
isotropic Robertson–Walker (‘RW’) geometry. It is characterised by a perfect
fluid matter tensor and the condition that local isotropy holds everywhere:

0 = u̇a = σab = ωa ⇔ 0 = Eab = Hab ⇒ 0 =3 ∇̃aµ =3 ∇̃ap =3 ∇̃aΘ , (25)

the first conditions stating the kinematical quantities are locally isotropic, the
second that these universes are conformally flat, and the third that they are
spatially homogeneous, thus showing that isotropy everywhere implies spatial
homogeneity in this case. We develop it here to show the dynamics and obser-
vational relations in this model.

3.1 Coordinates and metric

It follows then that:
1. Comoving coordinates can be found so that the metric takes the form

ds2 = − dt2 + S2(t) ( dr2 + f2(r) dΩ2 ) , ua = δa
0 , (26)

where dΩ2 = dθ2 + sin2 θ dφ2, ua = −∇at, and Ṡ/S = 1
3 Θ, characterising S(t)

as the scale factor for distances between any pair of fundamental observers. The
expansion of matter depends only on one scale length, so it is isotropic (there
is no distortion or rotation).

2. The Ricci tensor 3Rab is isotropic, so the 3-spaces {t =const} are 3-spaces
of constant curvature k/S2 where k can be normalised to ± 1, if it is non-zero.
Using the geodesic deviation equation in these 3-spaces, one finds that

f(r) = sin r , r , sinh r if k = +1 , 0 , − 1 . (27)

Thus when k = +1 the surface area 4π S2(t) f2(r) of a geodesic 2-sphere in
these spaces, centred on the (arbitrary) point r = 0, increases to a maximum at
r = π/2 and then decreases to zero again at the antipodal point r = π; hence
the point at r = 2π has to be the same point as r = 0, and these 3-spaces
are necessarily closed, with finite total volume. In the other cases the 3-spaces
are usually unbounded and the surface areas of these 2-spaces increase without
limit; however, unusual topologies still allow the spatial sections to be closed.

3.2 Dynamical equations

The remaining non-trivial equations are the energy equation (20), the Ray-
chaudhuri equation

3
S̈

S
+

1
2

(µ + 3p) = 0 , (28)
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and the Friedmann equation

µ− 1
3

Θ2 =
3 k

S2
, (29)

where k is a constant. Any two of these equations imply the third if Ṡ 6= 0 (the
latter equation being a first integral of the other two). All one has to do then
to determine the dynamics is to solve the Friedmann equation. The solution
depends on what form is assumed for the matter: Usually it is taken to be a
perfect fluid with equation of state p = p(µ), or as a sum of such fluids, or as a
scalar field with given potential V (φ). For the γ-law discussed above, the energy
equation integrates to give (21), which can then be used to represent µ in the
Friedmann equation.

On using the obvious tetrad above, all the other 1 + 3 covariant and tetrad
equations are identically true when these equations are satisfied.

3.2.1 Basic parameters

As well as the parameters H0 = (Ṡ/S)0, Ω0 = (κµ0/3H2
0 ), ΩΛ = (Λ/3H2

0 ) and
q0 = (3S̈/SH2

0 ), the FLRW models are characterised by the spatial curvature
parameter K0 = k/S2

0 = 3R0/6. These parameters are related by the equations
(28) and (29 ).

3.2.2 Singularity and ages

The existence of the big bang, and age limits on the universe, follow directly from
the Raychaudhuri equation, together with the energy assumption (µ + 3p) > 0
(true at least when quantum fields do not dominate), because the universe is
expanding today (Θ0 > 0). That is, the singularity theorem above applies in
particular to FLRW models. Furthermore, from the Raychaudhuri equation, in
any FLRW model, the fundamental age relation holds:

Age Theorem: In an expanding FLRW universe with vanishing
cosmological constant and satisfying the active gravitational mass
density energy condition, ages are strictly constrained by the Hubble
expansion rate: namely, at every instant, the age t0 of the universe
(the time since the big bang) is less than the inverse Hubble constant
at that time:

(µ + 3p) > 0 , Λ = 0 ⇒ t0 < 1/H0 . (30)

More precise ages t0(H0, Ω0) can be determined for any specific cosmological
model from the Friedmann equation (29); in particular, in a matter-dominated
early universe the same result will hold with a factor 2/3 on the right-hand
side, while in a radiation dominated universe the factor will be 1/2. Note that
this relation applies in the early universe when the expansion rate was much
higher, and, hence, shows that the hot early epoch ended shortly after the initial
singularity .
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3.3 Exact and approximate solutions

If Λ = 0 and the energy conditions are satisfied, FLRW models expand forever
from a big bang if k = − 1 or k = 0, and recollapse in the future if k = + 1. A
positive value of Λ gives a much wider choice for behaviours

3.3.1 Simplest models

a) Einstein static: S(t) =const, k = + 1, Λ = 1
2 (µ + 3p) > 0, where everything

is constant in space and time, and there is no redshift. This model is unstable
(see above).
b) de Sitter : S(t) = Sunit exp(H t), H = const, k = 0, a steady state solution
in a constant curvature space-time: it is empty, because (µ+ p) = 0, i.e. it does
not contain ordinary matter, but rather a cosmological constant,3 or a scalar
field in the strict ‘no-rolling’ case. It has ambiguous redshift because the choice
of families of worldlines and space sections is not unique in this case.
c) Milne: S(t) = t, k = − 1. This is flat, empty space-time in expanding
coordinates (again (µ + p) = 0).
d) Einstein–de Sitter : the simplest non-empty expanding model, with

k = 0 = Λ, p = 0, S(t) = a t2/3 , a = const .

Ω = 1 is always identically true in this case (this is the critical density case that
just manages to expand forever). The age of such a universe is t0 = 2/(3H0); if
the cosmological constant vanishes, higher density universes (Ω0 > 1) will have
ages less than this, and lower density universes (0 < Ω0 < 1) ages between this
value and ( 30).

3.3.2 Early-time solutions

At early times, when matter is relativistic or negligible compared with radiation,
the equation of state is p = 1

3 µ and the curvature term can be ignored. The
solution is

S(t) = c t1/2 , c = const , µ =
3
4

t−2 , T =
(

3
4a

)1/4 1
t1/2

, (31)

which determines the expansion time scale during nucleosynthesis and so the
way the temperature T varies with time (and hence determines the element
fractions produced), and has no adjustable parameters. Consequently the degree
of agreement attained between nucleosynthesis theory based on this time scale
and element abundance observations may be taken as supporting both a FLRW
geometry and the validity of the EFE at that epoch.

The standard thermal history of the hot early universe follows; going back
in time, the temperature rises indefinitely (at least until an inflationary or
quantum-dominated epoch occurs), so that the very early universe is an opaque

3A fluid with (µ + p) = 0 is equivalent to a cosmological constant.
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near-equilibrium mixture of elementary particles that combine to form nuclei,
atoms, and then molecules after pair production ends and the mix cools down
as the universe expands, while various forms of radiation (gravitational radi-
ation, neutrinos, electromagnetic radiation) successively decouple and travel
freely through the universe that has become transparent to them. This picture
is very well supported by the detection of the extremely accurate black body
spectrum of the CBR, together with the good agreement of nucleosynthesis ob-
servations with predictions based on the FLRW time scales (31) for the early
universe.

3.3.3 Scalar field

The inflationary universe models use many approximations to model a FLRW
universe with a scalar field φ as the dominant contribution to the dynamics,
so allowing accelerating models that expand quasi-exponentially through many
efoldings at a very early time, possibly leading to a very inhomogeneous struc-
ture on very large (super-particle-horizon) scales where decay of the scalar field
to radiation happens at different times. This then leads to important links be-
tween particle physics and cosmology, and there is a very large literature on this
subject. If an inflationary period occurs in the very early universe, the matter
and radiation densities drop very close to zero while the inflaton field dominates,
but is restored during ‘reheating’ at the end of inflation when the scalar field
energy converts to radiation.

This will not be pursued further here, except to make one point: because the
potential V (φ) is unspecified (the nature of the inflaton is not known) and the
initial value of the ‘rolling rate’ uφ can be chosen at will, it is possible to specify
a precise procedure whereby any desired evolutionary history S(t) is attained
by appropriate choice of the potential V (φ) and the initial ‘rolling rate’ (see [11]
for details). Thus, inflationary models may be adjusted to give essentially any
desired results in terms of expansion history.

3.3.4 Kinetic theory

While a fluid description is used most often, it is also of interest to use a kinetic
theory description of the matter in the universe. The details of collisionless
isotropic kinetic models in a FLRW geometry are given by Ehlers, Geren and
Sachs [4].

3.4 Phase planes

¿From these equations, as well as finding simple exact solutions, one can de-
termine evolutionary phase planes for this family of models; see Refsdal and
Stabell [25] for (Ωm, q0), Ehlers and Rindler [5] for (Ωm, Ωr, q0), Wainwright
and Ellis [30] for (Ω0,H0), and Madsen and Ellis [23] for (Ω, S). The latter are
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based on the phase-plane equation

dΩ
dS

= − (3γ − 2)
Ω
S

(1− Ω) . (32)

This equation is valid for any γ, i.e. for arbitrary relations between µ and p,
but gives a (Ω, S) phase plane flow if γ = γ(Ω, S), and in particular if γ = γ(S)
or γ =const. Non-static solutions can be followed through turnaround points
where uS = 0 (and so Ω is infinite). This enables one to attain complete (time-
symmetric) phase planes for models with and without inflation; see [23] for
details.

3.5 Observations

Astronomical observations are based on radiation travelling to us on the geodesic
null rays that generate our past light cone. In the case of a FLRW universe,
we may consider only radial null rays as these are generic (because of spatial
homogeneity, we can choose the origin of coordinates on any light ray of interest;
because of isotropy, light rays travelling in any direction are equivalent to those
travelling in any other direction). Thus we may consider geodesic null rays
travelling in the FLRW metric (26) such that ds2 = 0 = dθ = dφ; then it
follows that 0 = − dt2 + S2(t) dr2 on these geodesics. Hence, radiation emitted
at E and received at O obeys the basic relations

r =
∫ O

E

dr =
∫ t0

tE

dt

S(t)
=

∫ S0

SE

dS

S(t) Ṡ(t)
, (33)

where the term Ṡ may be found from the Friedmann equation (29), once a
suitable matter description has been chosen.

3.5.1 Redshift

The first fundamental observational quantity is redshift . Considering two suc-
cessive pulses sent from E to O, each remaining at the same comoving coordinate
position, it follows from (33) that the cosmological redshift in a FLRW model
is given by

(1 + zc) =
λ0

λE
=

∆T0

∆TE
=

S(t0)
S(tE)

, (34)

and so directly measures the expansion of the universe between when light was
emitted and when it is received. Two comments are in order. First, redshift
is essentially a time-dilation effect, and will be apparent in all observations
of a source, not just in its spectra; this characterisation has the important
consequences that (i) redshift is achromatic — the fractional shift in wavelength
is independent of wavelength, (ii) the width of any emitted frequency band dνE

is altered proportional to the redshift when it reaches the observer, i.e. the
observed width of the band is dν0 = (1 + z) dνE , and (iii) the observed rate of
emission of radiation and the rate of any time variation in its intensity will both
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also be proportional to (1 + z). Second, there can be local gravitational and
Doppler contributions z0 at the observer, and zE at the emitter; observations
of spectra tell us the overall redshift z, given by

(1 + z) = (1 + z0) (1 + zc) (1 + zE) , (35)

but cannot tell us what part is cosmological and what part is due to local
effects at the source and the observer. The latter can be determined from the
CBR anisotropy, but the former can only be estimated by identifying cluster
members and subtracting off the mean cluster motion. The essential problem is
in identifying which sources should be considered members of the same cluster.

3.5.2 Areas

The second fundamental issue is apparent size. Considering light rays converging
to the observer at time t0 in a solid angle dΩ = sin θ dθ dφ, from the metric form
(26) the corresponding null rays4 will be described by constant values of θ and
φ and at the time tE will encompass an area dA = S2(tE)f2(r)dΩ orthogonal
to the light rays, where r is given by (33). Thus, on defining the observer area
distance r0(z) by the standard area relation, we find

dA = r2
0 dΩ ⇒ r2

0 = S2(tE) f2(r) . (36)

Because these models are isotropic about each point, the same distance will
relate the observed angle α corresponding to a linear length scale ` orthogonal
to the light rays:

` = r0 α . (37)

One can now calculate r0 from this formula together with (33) and the Fried-
mann equation, or from the geodesic deviation equation (see [14]), to obtain for
a non-interacting mixture of matter and radiation,

r0(z) =
1

H0q0(q0 + β − 1)

[
(q0 − 1)

{
1 + 2q0z + q0z

2(1− β)
}1/2 − (q0 − q0βz − 1)

]

(1 + z)2
,

(38)
where β represents the matter to radiation ratio: (1 − β) ρm0 = 2 β ρr0 . The
standard Mattig relation for pressure-free matter is obtained for β = 1 and the
corresponding radiation result for β = 0.

An important consequence of this relation is refocusing of the past light cone:
the universe as a whole acts as a gravitational lens, so that there is a redshift
z∗ such that the area distance reaches a maximum there and then decreases for
larger z; correspondingly, the apparent size of an object of fixed size would reach
a minimum there and then increase as the object was moved further away. As a
specific example, in the simplest (Einstein–de Sitter) case with p = Λ = k = 0,
we find

β = 1 , q0 =
1
2
⇒ r0(z) =

2
H0

1
(1 + z)3/2

(
√

1 + z − 1 ) , (39)

4Bounded by geodesics located at (φ0, θ0), (φ0 + dφ, θ0), (φ0, θ0 + dθ), (φ0 + dφ, θ0 + dθ).
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which refocuses at z∗ = 5/4; objects further away will look the same size as
much closer objects. For example, an object at a redshift z1 = 1023 (i.e. at
about last scattering) will appear the same angular size as an object of identical
size at redshift z2 = 0.0019 (which is very close — it corresponds to a speed
of recession of about 570 km/ sec). In a low density universe, refocusing takes
place further out, at redshifts up to z ≈ 4, depending on the density, and with
apparent sizes depending on possible source size evolution.

The predicted (angular size, distance)–relations are difficult to test obser-
vationally because objects of more or less fixed size (such as spherical galaxies)
do not have sharp edges that can be used for measuring angular size and so
one has rather to measure isophotal diameters, while objects with well-defined
linear dimensions, such as double radio sources, are usually rapidly evolving and
so one does not know their intrinsic size. Thus, these tests, while in principle
clean, are in fact difficult to use in practice.

3.5.3 Luminosity and reciprocity theorem

There is a remarkable relation between upgoing and downgoing bundles of null
geodesics connecting the source at tE and the observer at t0. Define galaxy area
distance rG as above for observer area distance but for the upgoing rather than
downgoing bundle of null geodesics. The expression for this distance will be
exactly the same as (36 ) except that the times tE and t0 will be interchanged.
Consequently, on using the redshift relation (34),

Reciprocity Theorem: The observer area distance and galaxy
area distance are identical up to redshift factors:

r2
0

r2
G

=
1

(1 + z)2
. (40)

This is true in any space-time as a consequence of the standard first integral
of the geodesic deviation equation [6].

Now from photon conservation, the flux of light received from a source of
luminosity L at time tE will be measured to be

F =
L(tE)

4π

1
(1 + z)2

1
S 2

0, f
2(r)

1
r2
G

,

with r given by (33), and the two factors (1 + z) coming from photon redshift
and time dilation of the emission rate, respectively. On using the reciprocity
result this becomes

F =
L(tE)

4π

1
(1 + z)4

1
r2
0

, (41)

where r0(q0, z) is given by (38). On taking logarithms, this gives the stan-
dard (luminosity, redshift)–relation of observational cosmology. Observations
of this Hubble relation basically agree with these predictions, but are not ac-
curate enough to distinguish between the various FLRW models. The hopes
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that this relation would determine q0 from galaxy observations have faded away
because of the major problem of source evolution: we do not know what the
source luminosity would have been at the time of evolution. We lack standard
candles of known luminosity (or equivalently, rigid objects of known linear size,
from which apparent size measurements would give the answer). Various other
distance estimators such as the Tully–Fisher relation have helped considerably,
but not enough to give a definitive answer. Happily it now seems that Type Ia
supernovae can provide the answer, because their luminosity can be determined
from their light curves, which should depend only on local physics rather than
their evolutionary history.

3.5.4 Specific intensity

In practice, we measure (a) in a limited waveband rather than over all wave-
lengths as the ‘bolometric’ calculation above suggests; and (b) real detectors
measure specific intensity (radiation received per unit solid angle) at each point
of an image, rather than total source luminosity. Putting these together, we see
that if the source spectrum is I(νE), i.e. a fraction I(νE) dνE of the source radi-
ation is emitted in the frequency range dνE , then the observed specific intensity
at each image point is given by 5

Iν dν =
BE

(1 + z)3
I(ν(1 + z)) dν , (42)

where BE is the surface brightness of the emitting object, and the area distance
r0(z) has canceled out (because of the reciprocity theorem). This tells us the
apparent intensity of radiation detected in each direction — which is indepen-
dent of (area) distance, and dependent only on the source redshift, spectrum,
and surface brightness. Together with the angular diameter relation (37), this
determines what is actually measured by a detector.

An immediate application is black body radiation: if any radiation is emitted
as black body radiation at temperature TE , it follows from the black body
expression Iν = ν3 b(ν/TE) that the received radiation will also be black body
(i.e. have this same black body form) but with a measured temperature of

T0 =
TE

(1 + z)
. (43)

Note this is true in all cosmologies: the result does not depend on the FLRW
symmetries. The importance of this, of course, is that it applies to the observed
CBR.

3.5.5 Number counts

If we observe sources in a given solid angle dΩ in the distance range (r, r + dr),
the corresponding volume is dV = S3(tE) r2

0 dr dΩ, so if the source density is
5Absorption effects will modify this if there is sufficient absorbing matter present; see [6]

for relevant formulae.
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n(tE) and the probability of detection is p, the number of sources observed will
be

dN = p n(tE) dV = p

[
n(tE)

(1 + z)3

]
S3(t0) f2(r) dr dΩ , (44)

with r given by (33). This is the basic number count relation, where dr can be
expressed in terms of observable quantities such as dz; the quantity in brackets
is constant if source numbers are conserved in a FLRW model, that is

n(tE) = n(t0)(1 + z)3 . (45)

The FLRW predictions agree with observations only if we allow for source num-
ber and/or luminosity evolution (cf. the discussion of spherically symmetric
models in the next section); but we have no good theory for source evolution.

The additional problem is that there are many undetectable objects in the
sky, including entire galaxies, because they lie below the detection threshold;
thus we face the problem of dark matter, which is very difficult to detect by
cosmological observations except by its lensing effects (if it is clustered) and its
effects on the age of the universe (if it is smoothly distributed). The current
view is that there is indeed such dark matter, detected particularly through
its dynamical effects in galaxies and clusters of galaxies, with the present day
total matter density most probably in the range 0.1 ≤ Ω0 ≤ 0.3, while the
baryon density is of the order of 0.01 ≤ Ωbaryons

0 ≤ 0.03 (from nucleosynthesis
arguments). Thus, most of the dark matter is probably non-baryonic.

3.5.6 Other observations and the concordance model

Good cosmological models must fit (a) all available astronomical observations
of the type characterised above: number counts, magnitude-redshift and angu-
lar diameter-redshift measurements, etc, in particular the recent estimiates of
the deceleration parameter from observations of Type Ia supernovae in distant
galaxies. They must also (b) provide agreement between nucleosynthesis predic-
tions and element abundance measurments, stellar age estimates and the age of
the universe, and (c) give agreement between the cosmic background radiation
anisotropy spectrum and observations of the power spectrum of inhomogeneities
in the matter distribution, based on a theoretical model of structure formation
in the early universe.

We do indeed get good agreement of all these factors for a ‘concordance
model’ - a perturbed FLRW universe that at the present time has a non-zero
effective cosmological constant and a large preponderance of dark matter, with
nearly flat space sections: Ωm ' 0.3, Ωbaryons ' 0.02, ΩΛ ' 0.7, Ω0 ' 1 but with
marginal evidence that Ω0 > 1.The structure formation models are premised on
an inflationarly early era, but the nature of the field causaing inflation - the
inflaton - is completely unknown, also the nature of the non-baryonic dark mat-
ter present is unknown as is the nature of the present-day effective cosmological
constant (is it in fact constant or - as more usually supposed - in fact an effective
scalar field?)
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3.6 Observational limits

The first basic observational limit is that we cannot observe anything outside our
past light cone, given by (33). Combined with the finite age of the universe, this
leads to a maximum comoving coordinate distance from the origin for matter
with which we can have had any causal connection: namely

rph(t0) =
∫ t0

0

dt

S(t)
, (46)

which converges for any ordinary matter. Matter outside is not visible to us,
indeed we cannot have had any causal contact with it. Consequently (see Rindler
[26]), the particles at this comoving coordinate value define the particle horizon:
they separate that matter which can have had any causal contact with us since
the origin of the universe from that which cannot. This is most clearly seen
by using Penrose’s conformal diagrams, obtained on using as coordinates the
comoving radius and conformal time; see Penrose [24] and Tipler, Clarke and
Ellis [27]. The present day distance to the horizon is

Dph(t0) = S(t0) rph = S(t0)
∫ t0

0

dt

S(t)
. (47)

From (33), this is a sphere corresponding to infinite measured redshift (because
S(t) → 0 as t → 0).

Once comoving matter has entered the particle horizon, it cannot leave it
(i.e. once causal contact has been established in a FLRW universe, it cannot
cease).

Actually we cannot even see as far as the particle horizon: on our past light
cone information rapidly fades with redshift (because of (42 )); and because
the early universe is opaque, we can only see (by means of any kind of electro-
magnetic radiation) to the visual horizon (Ellis and Stoeger [13]), which is the
sphere at comoving coordinate distance

rvh(t0) =
∫ t0

td

dt

S(t)
, (48)

where td is the time of decoupling of matter and radiation, when the universe
became transparent (at about a redshift of z = 1100). The matter we see at that
time is the matter which emitted the CBR we measure today with a present
temperature of 2.73 o K; its present distance from us is

Dvh(t0) = S(t0) rvh . (49)

If we evaluate these quantities in an Einstein–de Sitter universe, we find an
interesting result: the present day distance to the particle horizon is Dph(t0) =
3 ct0.

Finally it should be noted that an early inflationary era will move the particle
horizon out to very large distances, thus solving the causal problem presented
by the isotropy of CBR arriving here from causally disconnected regions, but it
will have no effect on the visual horizon. Thus, it changes the causal limitations,
but does not affect the visual limits on the part of the universe we can see.
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3.6.1 Small universes

The existence of visual horizons represent absolute limits on what we can ever
know; because of them, we can only hope to investigate a small fraction of
all the matter in the universe. Furthermore, they imply we do not in fact
have the data needed to predict to the future, for at any time gravitational
radiation from as yet unseen objects (e.g. domain walls in a chaotic inflationary
universe) may cross the visual horizon and undermine any predictions we may
have made. However, there is one exceptional situation: it is possible we live in
a small universe, with a spatially closed topology on such a length scale (say,
300 to 800 Mpc) that we have already seen around the universe many times,
thus already having seen all the matter there is in the universe. The effect is
like being in a room with mirrors on the floor, ceiling, and all walls; images from
a finite number of objects seem to stretch to infinity. There are many possible
topologies, whatever the sign of k; the observational result — best modelled
by considering many identical copies of a basic cell attached to each other in
an infinitely repeating pattern — can be very like the real universe. In this
case we would be able to see our own galaxy many times over, thus being able
to observationally examine its historical evolution once we had identified which
images of distant galaxies were in fact repeated images of our own galaxy.

It is possible the real universe is like this. Observational tests can be carried
out by trying to identify the same cluster of galaxies, QSO’s, or X-ray sources
in different directions in the sky; or by detecting circles of identical temperature
variation in the CBR sky. If no such circles are detected, this will be a reasonably
convincing proof that we do not live in such a small universe — which has various
philosophical advantages over the more conventional models with infinite spatial
sections. Inter alia they can give reduced power on large scales so giving a simple
explanation of the low CBR quadrupole anisotropy.

3.7 FLRW universes as cosmological models

These models are very successful in explaining the major features of the observed
universe — its expansion from a hot big bang leading to the observed galactic
redshifts and remnant black body radiation, tied in well with element abundance
predictions and observations. However, these models do not describe the real
universe well in an essential way, in that the highly idealized degree of symmetry
does not correspond to the lumpy real universe. Thus, they can serve as basic
models giving the largest-scale smoothed out features of the observable physical
universe, but one needs to perturb them to get realistic (‘almost-FLRW’) uni-
verse models that can be used to examine the inhomogeneities and anisotropies
arising during structure formation, and that can be compared in detail with
observations.

However, there is a major underlying issue: because of their high symmetry,
these models are infinitely improbable in the space of all possible universes. This
high symmetry represents a very high degree of fine tuning of initial conditions,
which is extraordinarily improbable, unless we can show physical reasons why
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it should develop from much more general conditions. In order to examine that
question, one needs to look at much more general models and see if they do
indeed evolve towards the FLRW models because of physical processes. Addi-
tionally, while the FLRW models seem good models for the observed universe at
the present time, one can ask (a) are they the only possible models that will fit
the observations? (b) does the universe necessarily have the same symmetries
on very large scales (outside the particle horizon), or at very early and/or very
late times?

To study these issues, we need to look at more general models, developing
some understanding of their geometry and dynamics. Indeed there is a range
of models in addition to the FLRW models that can fulfill all present day ob-
servational requirements. Nevertheless, it is important to state that the family
of perturbed FLRW models can meet all present observational requirements,
provided we allow suitable evolution of source properties back in the past. They
also provide a powerful theoretical framework for considering the nature of and
effects of cosmic evolution. Hence, they are justifiably the standard models of
cosmology. No evidence stands solidly against them.

4 Dynamical evolution

We now consider aspects of more general models. Firstly, we have a good classi-
fication of symmetries of cosmological models; this is discussed in the Appendix.
Secondly, we have a good analysis of some particular families of models in ad-
dition to the FLRW models discussed above, where we can characterise the
geometry in detail and also obtain partial or full integration of the dynamical
equations. The major such families of models are also briefly discussed in the
Appendix.

4.1 Phase planes

Given the dynamical equation soutlined above, one can obtain dynamical sys-
tems representations for large families of cosmological models. This will be dis-
cussed by John Wainwright. In particular one can determine attractors, basins
of attraction, and saddle points for these families, thus determining which are
special and which are general models. A word of cauation here: proper assess-
ment of probability and generality depends on a well-founded measure on the
space of models. We do not have such a measure. Nevertheless the phase planes
probably give reliable indications of the issue of speciality and generality.

I will just pick up two particular issues here. Firstly, it appears form the
structure of the phase planes that the higher symmetry models provide a skele-
ton which guides the dynamical evolution of the lower symmetry models. This
will be discussed by John Wainwright. Secondly, the FLRW models are saddle
points in many of these phase planes. This means that intermediate isotropisa-
tion occurs: models that are quite unlike the FLRW models both at very early
and at very late times can spend a very long time in a state very close to that
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of specific FLRW models, before diverging to a completely different anisotropic
state. Such models can be good models of the real universe, as they will have
the same observational properties as (perturbed) FLRW models if they have
been close to a FLRW state since just before the epoch of nucleosynthesis.

4.2 Ensembles of models

Ensembles of models are characterised by distribution functions and measures
on the space of models. Much has been written about ensembles in a hand-
waving way but little has been done about such distribution functions except
to a certain extent in the case of chaotic inflationary FLRW universe models.
An in-depth examination of the evolution of distribution functions could be a
rewarding exercise.

4.2.1 Basic singularity theorem

The issue of whether there was or was not a singularity in the early universe is
of prime importance. Using the definition of S, the Raychaudhuri equation for
a generic model can be rewritten in the form

3
S̈

S
= − 2 (σ2 − ω2) +3 ∇̃a u̇a + (u̇au̇a)− 1

2
(µ + 3p) + Λ , (50)

showing how the curvature of the curve S(τ) along each worldline (in terms of
proper time τ along that worldline) is determined by the kinematical quantities,
the total energy density and pressure in the combination (µ + 3p), and the
cosmological constant Λ. This gives the basic

Singularity Theorem: In a universe where (µ+3p) > 0, Λ ≤ 0,
and u̇a = ωa = 0 at all times, at any instant when H0 = 1

3 Θ0 > 0,
there must have been a time t0 < 1/H0 ago such that S → 0 as
t → t0; a space-time singularity occurs there, where µ → ∞ and
p →∞ for ordinary matter (with (µ + p) > 0).

The further singularity theorems of Hawking and Penrose utilize this result
(and its null version) as an essential part of their proofs. In effect this is the
statement that if we follow the universe back far enough, under these conditions
it must have entered a quantum gravity regime; quantum gravity may or then
may not avoid the singularity.

However inflationary models violate the energy condition crucial to this the-
orem. Thus they can lead to singularity avoidance.

5 Singularities and non-singular models

We now look at the existence of singularity free solutions, see [10, 12], and pose
the issue of the tension between very special initial conditions and the existence
of singularities.
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5.1 Eternal inflationary models

Here we consider closed models in which K = +1 and H can become zero.
The models are simple, obey general relativity, and contain ordinary matter
and (minimally coupled) scalar fields. Previous examples of closed inflationary
models are, to our knowledge, either bouncing models or models in which in-
flation is preceded by deceleration. The K = +1 bouncing universe collapses
from infinity and then turns around at t∗ to expand in an inflationary phase,
followed by a standard hot big bang evolution. The canonical model for such a
bounce is the de Sitter universe in the K = +1 frame, with a(t) = a∗ cosh Ht .
These coordinates cover the whole spacetime, which is geodesically complete.
However, the bouncing models face a number of difficulties as realistic cosmolo-
gies. In particular, the initial state is hard to motivate (collapsing from infinite
size without causal interaction), and it is also difficult to avoid nonlinearities in
the collapse that prevent a regular bounce.

The models we present have a finite initial size and no bounce. The sim-
plest versions are ever-expanding Eddington-Lemâıtre type models, with a finite
amount of inflation occurring over an infinite time. The redshift and the total
number of e-folds remain bounded through the expansion of the universe until
the present day.

We assume that the early universe contains a scalar field φ with energy
density ρφ = 1

2 φ̇2 + V (φ) and pressure pφ = 1
2 φ̇2 − V (φ), and possibly also

matter with energy density ρ and pressure p = wρ, where − 1
3 ≤ w ≤ 1. The

cosmological constant is absorbed into the potential V . In the absence of in-
teractions between matter and the scalar field, they separately obey the energy
conservation and Klein-Gordon equations,

ρ̇ + 3(1 + w)Hρ = 0 , (51)
φ̈ + 3Hφ̇ + V ′(φ) = 0 . (52)

The Raychaudhuri field equation

ä

a
= −8πG

3

[
1
2
(1 + 3w)ρ + φ̇2 − V (φ)

]
, (53)

has first integral the Friedmann equation,

H2 =
8πG

3

[
ρ +

1
2
φ̇2 + V (φ)

]
− K

a2
, (54)

and they imply

Ḣ = −4πG
[
φ̇2 + (1 + w)ρ

]
+

K

a2
. (55)

The Raychaudhuri equation gives the condition for inflation,

ä > 0 ⇔ φ̇2 +
1
2
(1 + 3w)ρ < V (φ) . (56)
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For a positive minimum in the inflationary scale factor, a∗ = a(t∗) > 0, we
require

H∗ = 0 ⇔ 1
2
φ̇2
∗ + V (φ∗) + ρ∗ =

3K

8πGa2∗
, (57)

where the time t∗ may be infinite. The only way to satisfy Eq. (57 ) with
non-negative energy densities is if K = +1. Closed inflationary models admit
a minimum scale factor if inflation occurs for long enough, since curvature will
eventually win over a slow-rolling scalar field as we go back into the past The
inflationary singularity theorems mentioned above exclude this case, since they
either only consider K ≤ 0, or explicitly exclude the possibility H∗ = 0.

Closed models with a minimum scale factor a∗ > 0 include both bouncing
and ever-expanding cases. A simple ever-inflating model is the closed model
with radiation (w = 1

3 ) and cosmological constant. The exact solution is

a(t) = a∗

[
1 + exp

(√
2 t

a∗

)]1/2

. (58)

In the infinite past, t → −∞, the model is asymptotically Einstein static, a →
a∗. Inflation occurs for an infinite time to the past, but at any finite time
te À a∗, there is a finite number of e-folds,

Ne = ln
ae

a∗
≈ te√

2a∗
. (59)

The curvature parameter at te is strongly suppressed by the de Sitter-like ex-
pansion:

Ωe − 1 ≈ 2e−Ne . (60)

The exact model Eq. (58) is a simple example of Eddington-Lemâı tre type
solutions. There are trajectories of this type in the classical phase space sat-
isfying Einstein’s equations. They are past-asymptotically Einstein static and
ever-expanding. However, in these models inflation does not end. Below we
discuss more realistic models than Eq. (58), based on inflationary potentials,
which include Eddington-Lemâıtre type models that do exit from inflation.

In our scenario, the inflationary universe emerges from a small static state
that has within it the seeds for the emergence of the macroscopic universe. We
call this the “Emergent Universe” scenario. These universes are singularity-free,
without particle horizons, and ever-expanding (H ≥ 0 ). Even though Emergent
Universes admit closed trapped surfaces, these do not lead to a singularity, since
K = +1 and the weak energy condition is violated in the past .

The Einstein static universe is characterized by K = +1 and a = ai =const.
Equations (51)–(55) then imply that

1
2
(1− wi)ρi + V (φ) =

1
4πGa2

i

, (61)

(1 + wi)ρi + φ̇2
i =

1
4πGa2

i

, (62)
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where ρ̇i = 0 = φ̈i and V ′(φ) = 0. Thus V is constant, V = Vi, and Vi = Λi/8πG
is the vacuum energy, where Λi is the primordial cosmological constant. If the
scalar field kinetic energy vanishes, i.e. if φ̇i = 0, then (1 + wi)ρi > 0, so that
there must be matter to keep the universe static. If the static universe has only
a scalar field, i.e. if ρi = 0, then the field must have nonzero (but constant)
kinetic energy, as it rolls along the flat potential. (Dynamically, this case is
equivalent to a stiff fluid, wi = 1, plus cosmological constant Λi )

The radius ai of the initial static universe (where ai = a∗) can be chosen to
be a very small scale, but above the Planck scale,

ai > M−1
p , (63)

by suitable choice of Vi, φ̇2
i and ρi (with all of them ¿ M4

p). A simple way to
realize the scenario of the Emergent Universe is the following.

Consider a potential that is asymptotically flat in the infinite past,

V (φ) → Vi as φ → −∞ , t → −∞ , (64)

but drops towards a minimum at a finite value φf . The scalar field kinetic energy
density is asymptotic to the constant Einstein static value,

1
2
φ̇2 → 1

2
Vi =

1
8πGa2

i

as φ → −∞ , t → −∞ , (65)

where we used Eqs. (61) and (62) with ρi = 0. Because φ̇i 6= 0, no matter is
needed to achieve the initial static state. The field rolls from the Einstein static
state at −∞ and the potential slowly drops from its Einstein static original
value. Provided that φ̇2 decreases more rapidly than the potential, we have
V − φ̇2 > 0, so that the universe accelerates, by Eq. (56 ). Since φ̈ < 0 and
V ′ < 0, while φ̇ > 0, the Klein-Gordon equation (52) shows that the universe is
expanding (H > 0 ).

Inflation ends at time te, where Ve = φ̇2
e . Then reheating takes place as the

field oscillates about the minimum at φf . In the asymptotic past, V → V i , the
primordial cosmological constant Λi = 8πGVi is given by Eq. (65) as

Λi =
2
a2
i

, (66)

so that Λi is large for a small initial radius. At the minimum, Vf defines the
cosmological constant that dominates the late universe,

Λ = 8πGVf ¿ Λi . (67)

A typical example of a potential is

V − Vf = (Vi − Vf)
[
exp

(
φ− φf

α

)
− 1

]2

, (68)

where α is a constant energy scale.
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The infinite time of inflation, from t = −∞ to t = te (< tf), produces
a finite amount of inflation (and a finite redshift to the initial Einstein static
state). The potential produces expansion that is initially qualitatively similar
to the exact solution in Eq. (58), so that the total number of e-folds from the
initial expansion can be estimated, following Eq. (59), as

Ne = O

(
te
ai

)
. (69)

Provided that ai is chosen small enough and te large enough, a very large number
of e-folds can be produced. The parameters in the potential in Eq. (68) can be
chosen so that the primordial universe is consistent with current observations.

As with standard inflationary models, fine-tuning is necessary to produce
density perturbations at the O(10−5) level, and to fix Λ so that ΩΛ0 ∼ 0.7. The
fine-tuning problem in the Emergent models requires in particular a suitable
choice of initial radius ai, or equivalently the primordial cosmological constant,
Eq. (66). However, in a closed universe, there could be dynamical mechanisms
that adjust the cosmological constant, determined by the size of the universe. It
is also worth pointing out that Casimir effects in the early Einstein static state
could play an important role. It is not inconceivable that the combination of
these effects could lead to determination of a specific Einstein static radius that
is more stable than any other.

The initial Einstein static state also has the attractive feature that it is
neutrally stable against inhomogeneous linear perturbations when ρi = 0 (as
in the simple Emergent model above), or when ρi > 0 and the sound speed
of matter obeys c2

s > 1
5 . This stability property means that the Einstein static

model can be a natural initial state in the space of closed universes. The Einstein
static state is of course unstable to homogeneous perturbations, which break
the balance between curvature and energy density. This instability is crucial for
producing an inflationary era.

The further question of how probable the initial Einstein static model is in
the space of all FRW models involves the unresolved issue of a suitable measure
in this space. There are indications that it could be marginally preferred by
measures based on maximum entropy principles. The Einstein static universe
with radiation and vacuum energy maximizes the entropy, as shown by Gibbons.
We are not claiming that the Einstein static initial state is preferred, but it does
lead to an interesting and novel alternative to the standard models.

5.2 Special models (fine tuning) versus singularities

We pose the issue of the tension between very special initial conditions and the
existence of singularities. The specific geometrical fine-tuning problem in the
Emergent models is the requirement of a particular choice of the initial radius
a, if we are given the cosmological constant, or equivalently a specific unique
choice of the primordial cosmological constant, if we are given the initial radius
(see Eq. (66)). The model has been strongly criticised by some because of
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this fine-tuning. However we point out firstly that this criticism does not deny
these models are valid physical models, but rather claims they are not likely
to occur in reality because they are improbable. But the claimed singularity
theorems [2, 16, 29] are not based on probabilities, and these models do indeed
show that the geometric conditions of those theorems need not be satisfied.
Secondly, we point out that the force of the fine-tuning argument is based in
philosophy rather than physics. There is no scientifically based proof whatever
that the unique physical universe has to be probable. There are two major
philosophical approaches in cosmology to explaining the current state of the
universe. The presently fashionable one, following comments by Dingle in the
1930’s and the pioneering work of Misner in the 1960’s, and continued notably
in the inflationary universe scenario, is to try to show that the present state of
the universe is highly probable - physical processes make it very likely to have
occurred. However the earlier tradition is based on an opposite view: the idea
that Nature prefers symmetry, and the universe would have been likely to have
originated in a highly symmetric state. This view was central to Einstein’s paper
on the Einstein static model in 1917 , and was developed into the full-blown
philosophy of the Cosmological Principle used by McCrea, Bondi, and others
to justify the Robertson-Walker metrics and the Perfect Cosmological Principle
used by Bondi, Gold, and Hoyle to justify the Steady State Universe. A more
informal version was used by Einstein and de Sitter to justify universe models
with K = 0, see the discussion of this often used ‘simplicity principle’ by Dicke
and Peebles.

Now the point is that there is no scientific proof that the one or the other of
these approaches is the correct approach to use in cosmology. The underlying
problem is the uniqueness of the universe, and all the scientific and philosophical
difficulties that entails. One cannot apply statistics or probability to a unique
object, unless one uses Bayesian statistics where one knows all the priors - but
in the case of the existence of the Universe, they are unknowable, indeed they
don’t even exist in literal sense (because one is talking about the creation of
the universe itself). One might have a scientific basis for use of probability
in cosmology if we were certain that there exists an ensemble of universes - a
multiverse - but this is a complex and controversial proposal, and there is no
evidence whatever that it is correct, indeed it will almost certainly never be sci-
entifically provable that this is the case . Consequently the choice between these
two fundamentally different approaches to cosmological origins is of necessity a
philosophical one. The fact that a philosophical approach based on probabilities
is the currently fashionable one is irrelevant - that does not prove it is the prin-
ciple which actually underlies the existence of the real physical universe. One
can equally cogently suppose that whatever meta-physical process underlies the
existence of reality may, as so many have supposed in the past, prefer symmetry
to generality. Indeed there is some physical support for this proposal through
Penrose’ argument that a highly symmetric start to the universe is essential in
order that the thermodynamic arrow can function as it does. An argument of
this kind must presumably underlie the widespread use of inflationary universe
models with K = 0, because this highly special case (where the magnitude of the
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kinetic term in the Friedmann equation precisely balances the energy density of
the universe to infinite accuracy) is of precisely the same degree of speciality as
is involved in the initial conditions for the Emergent Universe. Choice of this
special case in so many inflationary universe studies prevents their investiga-
tion of important dynamical effects in the early universe, and that restrictive
choice is made on philosophical rather than physical grounds (one cannot obser-
vationally prove that Ω = 1 to the infinite accuracy required to establish that
in reality K = 0).. We are quite entitled to use this argument in the case of the
emergent universe - to consider the implications if whatever process caused the
universe to come into being preferred the high-symmetry state of the Einstein
static universe to any less ordered situation. Indeed the Einstein static universe
is the unique highest symmetry non-empty Robertson-Walker universe model,
being invariant under a 7-dimensional group of isometries. Thus it is a highly
preferred initial state geometrically, and it is interesting to see what models may
result if one assumes that this was (at least asymptotically) the initial state of
the universe.

In summary: inflationary cosmologies exist in which the horizon problem is
solved before inflation begins, there is no singularity, and the quantum gravity
regime is avoided and no exotic physics is involved. These Emergent Universe
models can be constructed with simple potentials (illustrated schematically in
Fig. 1), leading to past-infinite inflation with a bounded number of e-folds and
redshift. Explicit and simple forms of the potential can be found that are con-
sistent with observations for suitable choice of parameters in the potential. The
Emergent models illustrate the potentially strong primordial effects of positive
spatial curvature, leading to a very different early universe than the standard
models, while producing a late universe that can be observationally indistin-
guishable from the standard case. The initial Einstein static state has certain
appealing stability properties, and provides, because of its compactness, an in-
teresting arena for investigating the Casimir and other effects. The Emergent
models also open up interesting issues arising from infinite time extent (as op-
posed to the issues arising from infinite spatial extent in the standard models).

5.3 Problems With Infinity

When speaking of multiverses or ensembles of universes – possible or realised –
the issue of infinity often crops up. Researchers often envision an infinite set of
universes, in which all possibilities are realised. Can there really be an infinite
set of really existing universes? We suggest that, on the basis of well-known
philosophical arguments, the answer is No. Furthermore there are problems
with any universe modesl that entail either a spatial or temporal infinity.

There is no conceptual problem with an infinite set – countable or uncount-
able – of possible or conceivable universes. However, as stressed by David
Hilbert (1964), it can be argued that a really existing infinite set is not possible.
As he points out, following many others, the existence of the actually infinite
inevitably leads to well-recognised unresolvable contradictions in set theory, and
thus in definitions and deductive foundations of mathematics itself (Hilbert, pp.
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141-142). His basic position therefore is that “Just as operations with the in-
finitely small were replaced by operations with the finite which yielded exactly
the same results . . ., so in general must deductive methods based on the
infinite be replaced by finite procedures which yield exactly the same results.”
(p. 135) He concludes, “Our principle result is that the infinite is nowhere to
be found in reality. It neither exists in nature nor provides a legitimate basis
for rational thought . . . The role that remains for the infinite to play is solely
that of an idea . . . which transcends all experience and which completes the
concrete as a totality . . .” (Hilbert, p. 151). Indeed realised infinite sets
are not constructible – there is no procedure one can in principal implement to
complete such a set – they are simply incompletable. But, if that is the case,
then “infinity” cannot be arrived at, or realised. On the contrary, the concept
itself implies its inability to be realised! This is precisely why a realised past
infinity in time is not considered possible from this standpoint – since it involves
an infinite set of completed events or moments. There is no way of constructing
such a realised set, or actualising it.

Thus, it is important to recognise that infinity is not an actual number
we can ever specify or reach – it is simply the code-word for ” it continues
without end” . Whenever infinities emerge in physics – such as in the case of
singularities – we can be reasonably sure, as is usually recognised, that there
has been a breakdown in our models. An achieved infinity in any physical
parameter (temperature, density, spatial curvature) is almost certainly not a
possible outcome of any physical process – simply because it means traversing
in actuality an interval of values which never ends. We assume space extends
forever in Euclidean geometry and in many cosmological models, but we can
never prove that any realised 3-space in the real universe continues in this way -
it is an untestable concept, and the real spatial geometry of the universe is almost
certainly not Euclidean. Thus Euclidean space is an abstraction that is probably
not realised in physical practice. In the physical universe spatial infinities can
be avoided by compact spatial sections, either resultant from positive spatial
curvature or from choice of compact topologies in universes that have zero or
negative spatial curvature, (for example FLRW flat and open universes can have
finite rather than infinite spatial sections). Future infinite time is never realised:
rather the situation is that whatever time we reach, there is always more time
available. Much the same applies to claims of a past infinity of time: there may
be unbounded time available in the past in principle, but in what sense can it
be attained in practice? The arguments against an infinite past time are strong
– it’s simply not constructible in terms of events or instants of time, besides
being conceptually indefinite.
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6 Appendices

7 General tetrad formalism

A tetrad is a set of four orthogonal unit basis vector fields { ea }, a = 0, 1, 2, 3,
which can be written in terms of a local coordinate basis by means of the tetrad
components ea

i(xj):

ea = ea
i(xj)

∂

∂xi
⇔ ea(f) = ea

i(xj)
∂f

∂xi
, ea

i = ea(xi) , (70)

(the latter stating that the i-th component of the a-th tetrad vector is just the
directional derivative of the i-th coordinate in the direction ea). This can be
thought of as just a general change of vector basis, leading to a change of tensor
components of the standard tensorial form: T ab

cd = ea
i eb

j ec
k ed

l T ij
kl with

obvious inverse, where the inverse components ea
i(xj) (note the placing of the

indices!) are defined by

ea
i ea

j = δi
j ⇔ ea

i eb
i = δb

a . (71)

However, it is a change from an integrable basis to a non-integrable one, so
non-tensorial relations (specifically: the form of the metric and connection com-
ponents) are a bit different than when coordinate bases are used. A change
of one tetrad basis to another will also lead to transformations of the stan-
dard tensor form for all tensorial quantities: if ea = Λa

a′(xi) ea′ is a change of
tetrad basis with inverse ea′ = Λa′

a(xi) ea (each of these matrices representing
a Lorentz transformation), then T ab

cd = Λa′
a Λb′

b Λc
c′ Λd

d′ T a′b′
c′d′ . Again the

inverse is obvious.
The metric tensor components in the tetrad form are given by

gab = gij ea
i eb

j = ea · eb = ηab , (72)

where ηab = diag(− 1, +1, +1, + 1 ), showing that the basis vectors are unit
vectors orthogonal to each other (because the components gab are just the scalar
products of these vectors with each other). The inverse equation

gij(xk) = ηab ea
i(xk) eb

j(xk) (73)

explicitly constructs the coordinate components of the metric from the (inverse)
tetrad components ea

i(xj). We can raise and lower tetrad indices by use of the
metric gab = ηab and its inverse gab = ηab.

The commutation functions related to the tetrad are the quantities γa
bc(xi)

defined by the commutators of the basis vectors:

[ ea, eb ] = γc
ab(xi) ec ⇒ γa

bc(xi) = − γa
cb(xi) . (74)

where the commutator of any two vectors X, Y is [X, Y ] = XY − Y X. It
follows (apply this relation to the coordinate xi) that in terms of the tetrad
components,

γa
bc(xi) = ea

i ( eb
j ∂jec

i − ec
j ∂jeb

i ) = − 2 eb
i ec

j ∇[ie
a

j] . (75)
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These quantities vanish iff the basis { ea } is a coordinate basis: that is, there
exist coordinates xi such that ea = δa

i ∂/∂xi, iff [ ea, eb ] = 0 ⇔ γa
bc = 0.

The connection components Γa
bc for the tetrad (‘Ricci rotation coefficients’)

are defined by the relations

∇eb
ea = Γc

ab ec ⇔ Γc
ab = ec

i eb
j ∇jea

i , (76)

i.e. it is the c-component of the covariant derivative in the b -direction of
the a-vector. It follows that all covariant derivatives can be written out in
tetrad components in a way completely analogous to the usual tensor form,
for example ∇aTbc = ea(Tbc) − Γd

ba Tdc − Γd
ca Tbd, where for any function f ,

ea(f) = ea
i ∂f/∂xi is the derivative of f in the direction ea. In particular,

because ea(gbc) = 0 for gab = ηab, applying this to the metric gives

∇agbc = 0 ⇔ −Γd
ba gdc − Γd

ca gbd = 0 ⇔ Γ(ab)c = 0 , (77)

— the rotation coefficients are skew in their first two indices, when we raise and
lower the first indices only. We obtain from this and the assumption of vanish-
ing torsion the tetrad relations that are the analogue of the usual Christoffel
relations:

γa
bc = − (Γa

bc − Γa
cb) , Γabc =

1
2

( gad γd
cb − gbd γd

ca + gcd γd
ab ) . (78)

This shows that the rotation coefficients and the commutation functions are
each just linear combinations of the other.

Any set of vectors whatever must satisfy the Jacobi identities:

[ X, [ Y, Z ] ] + [ Y, [Z, X] ] + [ Z, [ X, Y ] ] = 0 ,

which follow from the definition of a commutator. Applying this to the basis
vectors ea, eb and ec gives the identities

e[a(γd
bc]) + γe

[ab γd
c]e = 0 , (79)

which are the integrability conditions that the γa
bc(xi) are the commutation

functions for the set of vectors ea.
If we apply the Ricci identities to the tetrad basis vectors ea, we obtain the

Riemann curvature tensor components in the form

Ra
bcd = ec(Γa

bd)− ed(Γa
bc) + Γa

ec Γe
bd − Γa

ed Γe
bc − Γa

be γe
cd . (80)

Contracting this on a and c, one obtains the EFE (for Λ = 0) in the form

Rbd = ea(Γa
bd)− ed(Γa

ba) + Γa
ea Γe

bd − Γa
de Γe

ba = Tbd − 1
2

T gbd . (81)

It is not immediately obvious that this is symmetric, but this follows because
(79) implies Ra[bcd] = 0 ⇒ Rab = R(ab).
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8 1+3 covariant propagation and constraint equa-
tions

There are three sets of equations to be considered, resulting from the EFE ( 1)
and its associated integrability conditions.

8.1 Ricci identities

The first set arise from the Ricci identities for the vector field ua, i.e.

2∇[a∇b]u
c = Rab

c
d ud . (82)

We obtain from this three propagation equations and three constraint equations.
The propagation equations are,

1. The Raychaudhuri equation

Θ̇−3 ∇̃au̇a = − 1
3

Θ2 + (u̇au̇a)− 2 σ2 + 2 ω2 − 1
2

(µ + 3p) + Λ , (83)

which is the basic equation of gravitational attraction, showing the repulsive
nature of a positive cosmological constant, leading to identification of (µ + 3p)
as the active gravitational mass density, and underlying the basic singularity
theorem (see below).

2. The vorticity propagation equation

ω̇〈a〉 − 1
2

ηabc 3∇̃bu̇c = − 2
3

Θ ωa + σa
b ωb ; (84)

together with (92) below, showing how vorticity conservation follows if there
is a perfect fluid with acceleration potential Φ [3] since then, ηabc 3∇̃buc =
ηabc3∇̃3

b∇̃cΦ = 2 ωa Φ̇.
3. The shear propagation equation

σ̇〈ab〉 −3 ∇̃〈au̇b〉 = − 2
3

Θ σab + u̇〈au̇b〉 − σ〈ac σb〉c − ω〈a ωb〉 − (Eab − 1
2

πab) , (85)

the anisotropic pressure source term πab vanishing for a perfect fluid; this shows
how the tidal gravitational field Eab directly induces shear (which then feeds
into the Raychaudhuri and vorticity propagation equations, thereby changing
the nature of the fluid flow).

The constraint equations are,
1. The (0α)-equation

0 = (C1)a =3 ∇̃bσ
ab − 2

3

3

∇̃aΘ + ηabc [ 3∇̃bωc + 2 u̇b ωc ] + qa , (86)

showing how the momentum flux (zero for a perfect fluid) relates to the spatial
inhomogeneity of the expansion;
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2. The vorticity divergence identity

0 = (C2) =3 ∇̃aωa − (u̇aωa) ; (87)

3. The Hab-equation

0 = (C3)ab = Hab + 2 u̇〈a ωb〉 +3 ∇̃〈aωb〉 − (curlσ)ab , (88)

characterising the magnetic Weyl tensor as being constructed from the ‘distor-
tion’ of the vorticity and the ‘curl’ of the shear, (curlσ)ab = ηcd〈a 3∇̃cσ

b〉
d.

8.2 Twice-contracted Bianchi identities

The second set of equations arise from the twice-contracted Bianchi identities
which, by the EFE (1), imply the conservation equations (2). Projecting parallel
and orthogonal to ua, we obtain the propagation equations

µ̇ +3 ∇̃aqa = −Θ(µ + p)− 2 (u̇aqa)− (σa
bπ

b
a) (89)

and

q̇〈a〉+3 ∇̃ap+3 ∇̃bπ
ab = − 4

3
Θ qa−σa

b qb−(µ+p) u̇a− u̇b πab−ηabc ωb qc , (90)

respectively. For perfect fluids, characterised by Eq. (16), these reduce to

µ̇ = −Θ(µ + p) , (91)

the energy conservation equation, and one constraint equation

0 =3 ∇̃ap + (µ + p) u̇a , (92)

the momentum conservation equation. This shows that (µ + p) is the inertial
mass density, and also governs the conservation of energy. It is clear that if this
quantity is zero (an effective cosmological constant) or negative, the behaviour
of matter will be anomalous.

8.3 Other Bianchi identities

The third set of equations arise from the Bianchi identities

∇[aRbc]de = 0 . (93)

Double contraction gives Eq. (2), already considered. On using the splitting
of Rabcd into Rab and Cabcd, the above 1 + 3 splitting of those quantities, and
the EFE, the once-contracted Bianchi identities give two further propagation
equations and two further constraint equations, which are similar in form to the
Maxwell field equations in an expanding universe.
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The propagation equations are,

(Ė〈ab〉 +
1
2

π̇〈ab〉)− ( curlH)ab +
1
2

3∇̃〈aqb〉 = − 1
2

(µ + p)σab −Θ (Eab +
1
6

πab) (94)

+ 3 σ〈ac (Eb〉c − 1
6

πb〉c)− u̇〈a qb〉 + ηcd〈a [ 2 u̇c Hb〉
d + ωc (Eb〉

d +
1
2

πb〉
d) ] ,

the Ė-equation, and

Ḣ〈ab〉 + (curl E)ab − 1
2
(curlπ)ab = −ΘHab + 3 σ〈ac Hb〉c +

3
2

ω〈a qb〉 (95)

− ηcd〈a [ 2 u̇c Eb〉
d − 1

2
σb〉

c qd − ωc Hb〉
d ] ,

the Ḣ-equation, where we have defined the ‘curls’

(curlH)ab = ηcd〈a 3∇̃cH
b〉

d , (96)
(curlE)ab = ηcd〈a 3∇̃cE

b〉
d , (97)

(curlπ)ab = ηcd〈a 3∇̃cπ
b〉

d . (98)

These equations show how gravitational radiation arises: taking the time deriva-
tive of the Ė-equation gives a term of the form (curl H) ; commuting the deriva-
tives and substituting from the Ḣ -equation eliminates H, and results in a term
in Ë and a term of the form (curl curl E), which together give the wave oper-
ator acting on E; similarly the time derivative of the Ḣ-equation gives a wave
equation for H.

The constraint equations are

0 = (C4)a = curlb(Eab +
1
2

πab)− 1
3

3

∇̃aµ +
1
3

Θ qa − 1
2

σa
b qb − 3 ωb Hab

− ηabc [ σbd Hd
c − 3

2
ωb qc ] , (99)

the (div E)-equation with source the spatial gradient of the energy density, which
can be regarded as a vector analogue of the Newtonian Poisson equation, en-
abling tidal action at a distance, and

0 = (C5)a = 3∇̃bH
ab + (µ + p) ωa + 3 ωb (Eab − 1

6
πab)

+ ηabc [
1
2

3

∇̃bqc + σbd (Ed
c +

1
2

πd
c) ] , (100)

the (div H)-equation, with source the fluid vorticity. These equations show
respectively that scalar modes will result in a non-zero divergence of Eab (and
hence a non-zero E-field), and vector modes in a non-zero divergence of Hab

(and hence a non-zero H-field).
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8.4 Maxwell field equations

Finally, we turn for completeness to the 1 + 3 decomposition of the Maxwell
field equations

∇bF
ab = ja

e , ∇[aFbc] = 0 . (101)

The propagation equations can be written as

Ė<a> − ηabc 3∇̃bHc = − j<a>
e − 2

3
Θ Ea + σa

b Eb + ηabc [ u̇b Hc + ωb Ec ] ,(102)

Ḣ<a> + ηabc 3∇̃bEc = − 2
3

Θ Ha + σa
b Hb − ηabc [ u̇b Ec − ωb Hc ] , (103)

while the constraint equations assume the form

0 = (CE) = 3∇̃aEa − 2 (ωaHa)− ρe , (104)
0 = (CH) = 3∇̃aHa + 2 (ωaEa) , (105)

where ρe = (−je aua).

9 Solutions with symmetries

Symmetries of a space or a space-time (generically, ‘space’) are transformations
of the space into itself that leave the metric tensor and all physical and geo-
metrical properties invariant. We deal here only with continuous symmetries,
characterised by a continuous group of transformations and associated vector
fields

9.1 Killing vectors

A space or space-time symmetry, or isometry, is a transformation that drags the
metric along a certain congruence of curves into itself. The generating vector
field ξi of such curves is called a Killing vector (field) (or ‘KV’), and obeys
Killing’s equations,

(Lξg)ij = 0 ⇔ ∇(iξj) = 0 ⇔ ∇iξj = −∇jξi , (106)

where LX is the Lie derivative. The set of all KV’s forms a Lie algebra with
a basis { ξa }, a = 1, 2, . . . , r, of dimension r ≤ 1

2 n (n − 1). ξi
a denote the

components with respect to a local coordinate basis, a, b, c label the KV basis,
and i, j, k the coordinate components. Any KV can be written in terms of this
basis, with constant coefficients. Hence: if we take the commutator [ ξa, ξb ] of
two of the basis KV’s, this is also a KV, and so can be written in terms of its
components relative to the KV basis, which will be constants. We can write the
constants as Cc

ab, obtaining

[ ξa, ξb ] = Cc
ab ξc, Ca

bc = Ca
[bc] . (107)
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By the Jacobi identities for the basis vectors, these structure constants must
satisfy

Ca
e[bC

e
cd] = 0 , (108)

(which is just equation (79) specialized to the case of a set of vectors with
constant commutation functions). These are the integrability conditions that
must be satisfied in order that the Lie algebra exist in a consistent way. The
transformations generated by the Lie algebra form a Lie group of the same
dimension.

9.2 Groups of isometries

The isometries of a space of dimension n must be a group, as the identity is
an isometry, the inverse of an isometry is an isometry, and the composition
of two isometries is an isometry. Continuous isometries are generated by the
Lie algebra of KV’s. The group structure is determined locally by the Lie
algebra, in turn characterised by the structure constants. The action of the
group is characterised by the nature of its orbits in space; this is only partially
determined by the group structure (indeed the same group can act as a space-
time symmetry group in quite different ways).

9.2.1 Dimensionality of groups and orbits

Most spaces have no KV’s, but special spaces (with symmetries) have some. The
group action defines orbits in the space where it acts, and the dimensionality of
these orbits determines the kind of symmetry that is present.

The orbit of a point p is the set of all points into which p can be moved
by the action of the isometries of a space. Orbits are necessarily homogeneous
(all physical quantities are the same at each point). An invariant variety is a
set of points moved into itself by the group. This will be bigger than (or equal
to) all orbits it contains. The orbits are necessarily invariant varieties; indeed
they are sometimes called minimum invariant varieties, because they are the
smallest subspaces that are always moved into themselves by all the isometries
in the group. Fixed points of a group of isometries are those points which are
left invariant by the isometries (thus the orbit of such a point is just the point
itself). These are the points where all KV’s vanish (however, the derivatives of
the KV’s there are non-zero; the KV’s generate isotropies about these points).
General points are those where the dimension of the space spanned by the KV’s
(that is, the dimension of the orbit through the point) takes the value it has
almost everywhere; special points are those where it has a lower dimension (e.g.
fixed points). Consequently, the dimension of the orbits through special points is
lower than that of orbits through general points. The dimension of the orbit and
isotropy group is the same at each point of an orbit, because of the equivalence
of the group action at all points on each orbit.

The group is transitive on a surface S (of whatever dimension) if it can move
any point of S into any other point of S. Orbits are the largest surfaces through
each point on which the group is transitive; they are therefore sometimes referred
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to as surfaces of transitivity. We define their dimension as follows, and determine
limits from the maximal possible initial data for KV’s:

dim surface of transitivity = s, where in a space of dimension n , s ≤ n.
At each point we can also consider the dimension of the isotropy group (the

group of isometries leaving that point fixed), generated by all those KV’s that
vanish at that point:

dim of isotropy group = q, where q ≤ 1
2 n (n− 1).

The dimension r of the group of symmetries of a space of dimension n is
r = s + q (translations plus rotations). From the above limits , 0 ≤ r ≤ n +
1
2 n (n−1) = 1

2 n (n+1) (the maximal number of translations and of rotations).
This shows the Lie algebra of KV’s is finite dimensional.

Maximal dimensions: If r = 1
2 n (n + 1), we have a space(-time) of constant

curvature (maximal symmetry for a space of dimension n). In this case,

Rijkl = K ( gik gjl − gil gjk ) , (109)

with K a constant; and K necessarily is a constant if this equation is true and
n ≥ 3. One cannot get q = 1

2 n (n− 1)− 1 so r 6= 1
2 n (n + 1)− 1.

A group is simply transitive if r = s ⇔ q = 0 (no redundancy: dimension-
ality of group of isometries is just sufficient to move each point in a surface of
transitivity into each other point). There is no continuous isotropy group.

A group is multiply transitive if r > s ⇔ q > 0 (there is redundancy in
that the dimension of the group of isometries is larger than is needed to move
each point in an orbit into each other point). There exist non-trivial isotropies.

9.3 Classification of cosmological symmetries

We consider non-empty perfect fluid models, i.e. (16) holds with (µ + p) > 0.
For a cosmological model, because space-time is 4-dimensional, the possibil-

ities for the dimension of the surface of transitivity are s = 0, 1, 2, 3, 4. As to
isotropy, we assume (µ + p) 6= 0; then q = 3, 1, or 0 because ua is invariant and
so the isotropy group at each point has to be a sub-group of the rotations acting
orthogonally to ua (and there is no 2-dimensional subgroup of O(3).) The di-
mension q of the isotropy group can vary over the space (but not over an orbit):
it can be greater at special points (e.g. an axis centre of symmetry) where the
dimension s of the orbit is less, but r (the dimension of the total symmetry
group) must stay the same everywhere. Thus the possibilities for isotropy at a
general point are:

a) Isotropic: q = 3, the Weyl tensor vanishes, kinematical quantities vanish
except Θ. All observations (at every point) are isotropic. This is the FLRW
family of geometries;

b) Local Rotational Symmetry (‘LRS’): q = 1, the Weyl tensor is of al-
gebraic Petrov type D, kinematical quantities are rotationally symmetric about
a preferred spatial direction. All observations at every general point are rota-
tionally symmetric about this direction. All metrics are known in the case of
dust and a perfect fluid .
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c) Anisotropic: q = 0; there are no rotational symmetries. Observations
in each direction are different from observations in each other direction.

Putting this together with the possibilities for the dimensions of the surfaces
of transitivity, we have the following possibilities (see Figure 1):

9.3.1 Space-time homogeneous models

These models with s = 4 are unchanging in space and time, hence µ is a constant,
so by the energy conservation equation (91) they cannot expand: Θ = 0. They
cannot produce an almost isotropic redshift, and are not useful as models of the
real universe. Nevertheless they are of some interest.

The isotropic case q = 3 (⇒ r = 7) is the Einstein static universe, the non-
expanding FLRW model (briefly mentioned above) that was the first relativistic
cosmological model found. It is not a viable cosmology inter alia because it has
no redshifts, but it laid the foundation for the discovery of the expanding FLRW
models.

The LRS case q = 1 (⇒ r = 5) is the Gödel stationary rotating universe, also
with no redshifts. This model was important because of the new understanding
it brought as to the nature of time in General Relativity. Inter alia, it is a
model in which causality is violated (there exist closed timelike lines through
each space-time point) and there exists no cosmic time function whatsoever.

The anisotropic models q = 0 (⇒ r = 4) are all known, but are interesting
only for the light they shed on Mach’s principle.

9.3.2 Spatially homogeneous universes

These models with s = 3 are the major models of theoretical cosmology, because
they express mathematically the idea of the ‘cosmological principle’: all points
of space at the same time are equivalent to each other .

The isotropic case q = 3 (⇒ r = 6) is the family of FLRW models, the
standard models of cosmology.

The LRS case q = 1 (⇒ r = 4) is the family of Kantowski–Sachs uni-
verses plus the LRS orthogonal and tilted Bianchi models. The simplest are the
Kantowski–Sachs family, with comoving metric form

ds2 = − dt2 + A2(t) dr2 + B2(t) ( dθ2 + f2(θ) dφ2 ) , (110)

where f(θ) is given by (27).
The anisotropic case q = 0 (⇒ r = 3) is the family of Bianchi universes with

a group of isometries G3 acting simply transitively on spacelike surfaces. They
can be orthogonal or tilted; the simplest class is the Bianchi Type I family.
There is only one essential dynamical coordinate (the time t), and the EFE
reduce to ordinary differential equations, because the inhomogeneous degrees
of freedom have been ‘frozen out’. They are thus quite special in geometrical
terms; nevertheless, they form a rich set of models where one can study the
exact dynamics of the full non-linear field equations. The solutions to the EFE
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will depend on the matter in the space-time. In the case of a fluid (with uniquely
defined flow lines), we have two different kinds of models:

Orthogonal models, with the fluid flow lines orthogonal to the surfaces of
homogeneity;

Tilted models, with the fluid flow lines not orthogonal to the surfaces of
homogeneity; the components of the fluid peculiar velocity enter as further
variables. Rotating models must be tilted, and are much more complex than
non-rotating models.

9.3.3 Spatially inhomogeneous universes

These models have s ≤ 2.
The LRS cases (q = 1 ⇒ s = 2, r = 3) are the spherically symmetric family

with comoving metric form

ds2 = −C2(t, r) dt2 + A2(t, r) dr2 + B2(t, r) ( dθ2 + f2(θ) dφ2 ) , (111)

where f(θ) is given by (27). In the dust case, we can set C(t, r) = 1 and can
integrate the EFE analytically; for k = + 1, these are the Lemâıtre–Tolman–
Bondi (‘LTB’) spherically symmetric models [1]. They may have a centre of
symmetry (a timelike worldline), and can even allow two such centres, but they
cannot be isotropic about a general point (because isotropy everywhere implies
spatial homogeneity; see the discussion of FLRW models). The anisotropic cases
(q = 0 ⇒ s ≤ 2, r ≤ 2) include solutions admitting an Abelian or non-Abelian
group of isometries G2, and spatially self-similar models.

Solutions with no symmetries at all have r = 0 ⇒ s = 0, q = 0. The real
universe, of course, belongs to this class; all the others are intended as approx-
imations to this unique universe. Remarkably, we know some exact solutions
without symmetries, specifically (a) the Szekeres quasi-spherical models, that
are in a sense non-linear FLRW perturbations, with comoving metric form

ds2 = − dt2 + e2A dx2 + e2B(dy2 + dz2) , A = A(t, x, y, z) , B = B(t, x, y, z) ,
(112)

(b) Stephani’s conformally flat models, and (c) Oleson’s type N solutions (for a
discussion of these and all the other inhomogeneous models, see Krasi ński [20]
and Kramer et al [21]).

9.3.4 Swiss-Cheese models

Finally, an interesting family of inhomogeneous models is the Swiss-Cheese fam-
ily of models, obtained by repeatedly cutting out a spherical region from a
FLRW model and filling it in with another spherical model: Schwarzschild or
LTB, for example. This requires:

(i) locating the 3-dimensional timelike junction surfaces Σ± in each of the
two models;

(ii) defining a proposed identification Φ between Σ+ and Σ−;
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(iii) determining the junction conditions that (a) the 3-dimensional metrics
of Σ+ and Σ− (the first fundamental forms of these surfaces) be isometric un-
der this identification, so that there be no discontinuity when we glue them
together — we arrive at the same metric from both sides — and (b) the second
fundamental forms of these surfaces must also be isometric when we make this
identification, so that they too are continuous in the resultant space-time —
equivalently, there is no discontinuity in the direction of the spacelike unit nor-
mal vector as we cross the junction surface Σ (this is the condition that there
be no surface layer on Σ once we make the join).

(iv) Having determined that these junction conditions can be satisfied for
some particular identification of points, one can then proceed to identify these
corresponding points in the two surfaces Σ+ and Σ−, thus gluing an interior
Schwarzschild part to an exterior FLRW part, for example.

(v) One can continue in this way, obtaining a family of holes of different sizes
in a FLRW model with different interior fillings, with further FLRW model seg-
ments fitted into the interiors of some of these regions, obtaining a Swiss-Cheese
model. One can even obtain a hierarchically structured family of spherically
symmetric vacuum and non-vacuum regions in this way.

These models were originally developed by Einstein and Strauss to examine
the effect of the expansion of the universe on the solar system. Subsequent uses
of these models have included examining Oppenheimer–Snyder collapse in an
expanding universe, examining gravitational lensing effects on area distances,
investigating CBR anisotropies, modelling voids in large-scale structure, per-
haps using surface-layers, modelling the universe as a patchwork of domains of
different curvature k = 0,± 1 .
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