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Abstract

I will consider domains of dependence in theory and in practice, show-
ing how while there are nice FOSH formulations and associated results in
relativistic cosmology, the charasteristics of scalar and vector perturba-
tions are timelike, hence the real domains of dependence in cosmology are
much smaller than implied by the light cone. This can be clearly seen in
relation to the different physical conditions at different stages of evolution
of the universe. Finally I will give some brief comments about the nature
of physically important gravitational effects at these different stages and
put the question: are there any epochs in the evolution of realistic universe
models where tensor (gravitational wave) modes are important? This will
be distinguished from the Bianchi Type IX oscillations which are ‘silent
universes’ characterised by ODE’s. The issue here is what characterises a
gravitational wave; I suggest that the criterion is that both curlE 6= 0 and
curlH 6= 0.In appendices I will briefly relate this to the issue of the arrow
of time and how that problem looks different at each of these epochs.

1 Domains of dependence: theory and practice

The purpose now is to look at domains of dependence in cosmological models
and their relation to irreversible local processes and the arrow of time. We shall
see that the theoretical domains of dependence are different than the practical
ones. . Finally we ask if there are ever times in the history of the universe
when gravitational wave effects are significant, as opposed to time-dependent
tidal forces. At the present time gravitational wave effects are insignificant:
and that is why a local Newtonian approximation, and indeed the existence of
isolated systems, is possible. In Appendices, we briefly look at how this relates
to irreversible local processes and the arrow of time.

2 First-order symmetric hyperbolic systems

We consider evolution systems for a collection of k real-valued field variables
uA = uA(xµ) that are composed of a set of k quasi-linear partial differential
equations of first order given by

MAB µ(xν , uC) ∂µuB = NA(xν , uC) , A, B, C = 1, . . . , k ; (1)
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the field variables uA are functions of a set of local spacetime coordinates {xµ }.
Evolution systems of this form are called symmetric if the real-valued k×k coef-
ficient matrices entering the principle part satisfy MAB µ = M (AB) µ; moreover,
they are called hyperbolic if the contraction MAB µ nµ with the coordinate com-
ponents of an arbitrary past-directed timelike 1-form na yields a positive-definite
matrix. Thus these are FOSH (first-order symmetric hyperbolic) systems [7],
[3]. We remark that (i) cases with MAB µ = MAB µ(xν) are referred to as
semi-linear , and (ii) cases with MAB µ = MAB µ(uC) and NA = NA(uC) are
referred to as autonomous. In general, it proves convenient to consider a (1+3)–
decomposition of Eq. (1) in the format

MAB 0(t, xj , uC) ∂tuB + MAB i(t, xj , uC) ∂iuB = NA(t, xj , uC) .

The characteristic condition

0 = Q := det [ MAB µ∇µφ ] (2)

determines the coordinate components of the past-directed normals ∇aφ of the
set of characteristic 3-surfaces C:{φ(xµ) =const} associated with the FOSH
evolution system (1). With MAB µ = M (AB) µ, hyperbolicity of Eq. (1) thus
also corresponds to all individual roots (“eigenvalues”) v of Eq. (2) being real-
valued . Every individual v then defines a pair of left and right nullifying vectors,
lA and rA, by

0 =: lA (MAB µ∇µφ) , 0 =: (MAB µ∇µφ) rB ; (3)

the linearly independent sets { lA } or { rA } form a basis of the k-dimensional
space of field variables uA.

According to the theory discussed in Ch. VI.4.2 of Courant and Hilbert [3],
FOSH evolution systems of the format (1) have the power to describe the phys-
ical transport along bicharacteristic rays of jump discontinuities that exist in
the outward first derivatives across a characteristic 3-surface C:{φ(xµ) =const}
of the field variables uA; the tangential first derivatives of the uA as well as the
uA themselves are assumed to be continuous across C:{φ(xµ) =const}. As is
standard, we will use the notation

[f ] := lim
φ→c+

f − lim
φ→c−

f = f+ − f−

to symbolise a jump discontinuity across C:{φ(xµ) =const} in the value of a
given variable f . Under the stated assumptions, it follows from Eqs. (1) and
(3) that

0 = (MAB µ∇µφ) [ ∂φuB ] ⇔ [ ∂φuA ] = [∂φu] rA , (4)

i.e., the jump discontinuity [ ∂φuA ] must be proportional to a right nullifying
vector rA. The real-valued scalar of proportionality, denoted by [∂φu], is as-
sumed to have continuous first derivatives. Then, according to Chs. VI.4.2
and VI.4.9 of Ref. [3], for linear, semi-linear and quasi-linear FOSH evolution
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systems (1) the transport equation for [∂φu] along bicharacteristic rays within
the characteristic 3-surfaces C:{φ(xµ) =const} takes the effective form

0 = (lAMAB µrB) ∂µ[∂φu] +
(
(lAMAB µ) ∂µrB − (lANABrB)

)
[∂φu] . (5)

Note, in particular, the involutive character of this relation; if [∂φu] is non-zero
at one point along a bicharacteristic ray, it will be non-zero everywhere along
this ray. Note also that the present treatment of jump discontinuities breaks
down when the C:{φ(xµ) =const} within a given family start to intersect and
so prompt the formation of shocks. Shock formation, however, cannot arise
when the principal part of Eq. (1) is semi-linear. It is a special feature of the
relativistic gravitational field equations that related FOSH evolution systems
have principal parts which are effectively semi-linear, in the branches that evolve
the degrees of freedom in the gravitational field itself.

We now put the cosmological equations discussed in the last lecture into
FOSH form, following [1, 2].

2.1 Choice of gauge source functions and coordinates

There exists within a 1 + 3 orthonormal frame representation of the relativis-
tic gravitational field equations a set of ten gauge source functions, G :=
{T 0, Tα, Tα

0, Tα
β }, that can be arbitrarily prescribed in any dynamical con-

sideration (and are thus assumed to be “known”) [6]. These relate to (i) the
arbitrary choice of a future-directed reference “time flow vector field” T, which,
in terms of the orthonormal basis { e0, eα }, is expressed by

T := T 0 e0 + Tα eα , T 0 > 0 , (6)

and (ii) the propagation of the orthonormal basis { e0, eα } along T, described
by

∇Te0 := Tα
0 eα , ∇Teα := T 0

α e0 + T β
α eβ . (7)

Parallel transport of { e0, eα } along T corresponds to setting 0 = T 0
α = Tα

β .
Upon introduction of a dimensionless local time coordinate t and dimensionless
local spatial coordinates {xi } that comove with T, the gauge conditions related
to a 1 + 3 orthonormal frame representation are made explicit by [6]

e0
µ =

1
T 0

(M−1
0 δµ

0 − Tα eα
µ) , Γ0

α0 =
1

T 0
(T 0

α − Γ0
αβ T β) , (8)

Γα
β0 =

1
T 0

(Tα
β − Γα

βγ T γ) ; (9)

we keep the inverse unit of [ length ], M−1
0 , as a coefficient for reasons of physical

dimensions.
The fluid-comoving, Lagrangean perspective where we identify the timelike

reference congruence with the fluid 4-velocity field, e0 ≡ u, is now obtained by
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fixing three of the four dimensionless coordinate gauge source functions accord-
ing to Tα = 0, resulting in an alignment T ‖ e0 (≡ u). This leads to

e0
µ = M−1 δµ

0 , T 0
α = T 0 Γ0

α0 = T 0 u̇α , Tα
β = T 0 Γα

β0 = T 0 εα
βγ Ωγ ,

(10)
where M := T 0M0. Consequently, the three frame gauge source functions T 0

α

become proportional to the components of the fluid acceleration u̇α, while the
three frame gauge source functions Tα

β become proportional to the components
of the rotation rate Ωα at which the spatial frame { eα } fails to be Fermi-
propagated along u.

2.2 Connection components and commutators

The 24 algebraically independent frame components of the spacetime connection
Γa

bc can be split into the set

Γα00 = u̇α = ΓF 00α (11)

Γα0β =
1
3

Θ δαβ + σαβ − εαβγ ωγ = ΓF 0βα (12)

Γαβ0 = εαβγ Ωγ = ΓF 0αβ (13)

Γαβγ = 2 a[α δβ]γ + εγδ[α nδ
β] +

1
2

εαβδ nδ
γ = ΓF βγα . (14)

It contains the familiar kinematical fluid variables: u̇α, its relativistic acceler-
ation, Θ, its rate of expansion, σαβ = σβα, its rate of shear (with σα

α = 0),
and ωα, its vorticity. Moreover, Ωα is the rate of rotation of the spatial frame
{ eα } with respect to a Fermi-propagated basis. Finally, aα and nαβ = nβα are
9 spatial commutation functions.

The condition that the spacetime connection be torsion-free, ∇[a∇b]f = 0
for any spacetime scalar f , then translates into the commutator equations

[ e0, eα ] (f) = u̇α e0(f)− [
1
3

Θ δα
β + σα

β + εα
β

γ (ωγ + Ωγ) ] eβ(f)(15)

[ eα, eβ ] (f) = 2 εαβγ ωγ e0(f) + [ 2 a[α δγ
β] + εαβδ nδγ ] eγ(f) . (16)

2.3 Constraint equations

The following relations in the set obtained from an extended 1 + 3 orthonormal
frame representation of the relativistic gravitational field equations do not con-
tain any frame derivatives with respect to e0. Hence, we refer to these relations
as “constraint equations”. They are [5]

0 = (C1)α := (eβ − 3 aβ) (σαβ)− 2
3

δαβ eβ(Θ) (17)

−nα
β ωβ + εαβγ [ (eβ + 2 u̇β − aβ) (ωγ)− nβδ σδ

γ ]
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0 = (C2) := (eα − u̇α − 2 aα) (ωα) (18)

0 = (C3)αβ := (δγ〈α eγ + 2 u̇〈α + a〈α) (ωβ〉)− 1
2

nγ
γ σαβ + 3 n〈αγ σβ〉γ + Hαβ

− εγδ〈α [ (eγ − aγ) (σβ〉
δ) + nβ〉

γ ωδ ] (19)

0 = (CJ)α := (eβ − 2 aβ) (nαβ) +
2
3

Θωα + 2 σα
β ωβ + εαβγ [ eβ(aγ)− 2 ωβ Ωγ ]

(20)

0 = (CG)αβ := ∗Sαβ +
1
3

Θ σαβ − σ〈αγ σβ〉γ − ω〈α ωβ〉 + 2 ω〈α Ωβ〉 − Eαβ

(21)

0 = (CG) := ∗R +
2
3

Θ2 − (σαβσαβ) + 2 (ωαωα)− 4 (ωα Ωα)− 2 µ− 2Λ

(22)

0 = (C4)α := (eβ − 3 aβ) (Eαβ)− 1
3

δαβ eβ(µ)− 3 ωβ Hαβ − εαβγ [ σβδ Hδ
γ + nβδ Eδ

γ ]

(23)
0 = (C5)α := (eβ − 3 aβ) (Hαβ) + (µ + p)ωα + 3 ωβ Eαβ + εαβγ [ σβδ Eδ

γ − nβδ Hδ
γ ]
(24)

0 = (CPF)α := c2
s δαβ eβ(µ) + (µ + p) u̇α ,

where

∗Sαβ := e〈α(aβ〉) + b〈αβ〉 − εγδ〈α (e|γ| − 2 a|γ|) (nβ〉δ) (25)

∗R := 2 (2 eα − 3 aα) (aα)− 1
2

bα
α (26)

bαβ := 2nαγ nβ
γ − nγ

γ nαβ , (27)

c2
s(µ) := dp(µ)/dµ defines the isentropic speed of sound with 0 ≤ c2

s ≤ 1,
and angle brackets denote the symmetric tracefree part. When 0 = ωα(u),
such that the fluid 4-velocity field u constitutes the normals to a family of
spacelike 3-surfaces S:{t =const}. In this case, one also speaks of (CG) as
the generalised Friedmann equation, alias the “Hamiltonian constraint” or the
“energy constraint”.

2.4 Propagation equations

These are the equations with explicit time derivatives. They are [5]
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2.4.1 Evolution of spatial commutation functions

The 9 spatial commutation functions aα and nαβ are generally evolved by Equa-
tions originating from the Jacobi identity. Employing each of the constraints
(C1)α to (C3)αβ listed in the previous paragraph, we can eliminate eα frame
derivatives of the kinematical fluid variables Θ, σαβ and ωα from their right-
hand sides. Thus, we obtain the following equations for the evolution of the
spatial connection components:

e0(aα) = − 1
3

(Θ δα
β − 3

2
σα

β) (u̇β + aβ) +
1
2

nα
β ωβ − 1

2
qα (28)

− 1
2

εαβγ [ (u̇β + aβ)− nβδ σδ
γ − (eβ + u̇β − 2 aβ) (Ωγ) ] +

1
2

(C1)α

e0(nαβ) = − 1
3

Θnαβ − σ〈αγ nβ〉γ +
1
2

σαβ nγ
γ − (u̇〈α + a〈α)ωβ〉 −Hαβ + (δγ〈α eγ + u̇〈α) (Ωβ〉)

− 2
3

δαβ [ 2 (u̇γ + aγ)ωγ − σγ
δ nδ

γ + (eγ + u̇γ) (Ωγ) ] (29)

− εγδ〈α [ (u̇γ + aγ) σβ〉
δ − (ωγ + 2 Ωγ)nβ〉

δ ]− 2
3

δαβ (C2) + (C3)αβ .

2.4.2 Evolution of kinematical fluid variables

The evolution equations for the 9 kinematical fluid variables Θ, σαβ and ωα are
provided by the familiar Ricci field equations,

e0(Θ)− eα(u̇α) = − 1
3

Θ2 + (u̇α − 2 aα) u̇α − (σα
βσβ

α) + 2 (ωαωα)− 1
2

(µ + 3p) + Λ

(30)

e0(σαβ)− δγ〈α eγ(u̇β〉) = − 2
3

Θ σαβ − σ〈αγ σβ〉γ − ω〈α ωβ〉 + (u̇〈α + a〈α) u̇β〉 − (Eαβ − 1
2

παβ)

+ εγδ〈α [ 2Ωγ σβ〉
δ − nβ〉

γ u̇δ ] (31)

e0(ωα)− 1
2

εαβγ eβ(u̇γ) = − 2
3

Θ ωα + σα
β ωβ − 1

2
nα

β u̇β − 1
2

εαβγ [ aβ u̇γ − 2Ωβ ωγ ] .

(32)

2.4.3 Evolution of Weyl curvature and matter variables

Finally, we have the Bianchi field equations for the 10 Weyl curvature variables
Eαβ and Hαβ and the 4 matter variables µ and qα, which are obtained from the
once-contracted and twice-contracted second Bianchi identity, respectively:

e0(Eαβ +
1
2

παβ)− εγδ〈α eγ(Hβ〉
δ) +

1
2

δγ〈α eγ(qβ〉) = (33)

− 1
2

(µ + p)σαβ −Θ(Eαβ +
1
6

παβ) + 3 σ〈αγ (Eβ〉γ − 1
6

πβ〉γ)

+
1
2

nγ
γ Hαβ − 3 n〈αγ Hβ〉γ − 1

2
(2 u̇〈α + a〈α) qβ〉
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+ εγδ〈α [ (2 u̇γ − aγ)Hβ〉
δ

+ (ωγ + 2Ωγ) (Eβ〉
δ +

1
2

πβ〉
δ) +

1
2

nβ〉
γ qδ ]

e0(Hαβ) + εγδ〈α eγ(Eβ〉
δ − 1

2
πβ〉

δ) = −Θ Hαβ + 3 σ〈αγ Hβ〉γ +
3
2

ω〈α qβ〉 (34)

− 1
2

nγ
γ (Eαβ − 1

2
παβ) + 3 n〈αγ (Eβ〉γ − 1

2
πβ〉γ)

+ εγδ〈α [ aγ (Eβ〉
δ − 1

2
πβ〉

δ)− 2 u̇γ Eβ〉
δ

+
1
2

σβ〉
γ qδ + (ωγ + 2 Ωγ)Hβ〉

δ ]

e0(qα) + δαβ eβ(p) + eβ(παβ) = −4
3

Θ qα − σα
β qβ − (µ + p) u̇α − (u̇β − 3 aβ)παβ

− εαβγ [ (ωβ − Ωβ) qγ − nβδ πδ
γ ] (35)

e0(µ) + eα(qα) = −Θ(µ + p)− 2 (u̇α − aα) qα − σα
β πβ

α . (36)

2.5 Matter model

The matter source will be assumed to be a perfect fluid such that, with respect
to fluid-comoving observers,

0 = qα(u) = παβ(u) , (37)

i.e., the energy current density and the anisotropic pressure both vanish. Addi-
tionally, a baryotropic equation of state is assumed,

p = p(µ) , (38)

relating the isotropic pressure p(u) to the total energy density µ(u). As above,
c2
s := dp(µ)/dµ is the isentropic speed of sound . Under the assumptions (37)

the evolution equation for qα reduces to the new constraint equation

0 = (CPF )α := δαβ eβ(p) + (µ + p) u̇α , (39)

which is often called the momentum conservation equation.
The general extended 1 + 3 ONF dynamical equations just given do not

directly form a FOSH evolution system, for two reasons. First, they do not
provide evolution equations for any of the geometrical variables u̇α, Ωα, p and
παβ .1 In the case of Ωα this is a reflection of the freedom of choice of a par-
ticular frame { ea }. The indeterminacy of propagation of the remaining three

1The time derivative of the latter is indeed included in one of the Bianchi field equations,
but not in a ‘pure’ form; because of the dynamical meaning of παβ discussed below, we regard
this as an equation for Eαβ .
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variables reveals the necessity of tying the description of non-vacuum gravita-
tional phenomena to a thermodynamical description of the matter source fields.
This may be achieved, for example, by a phenomenological scheme for dissi-
pative relativistic fluids or a relativistic kinetic theory approach. Second, the
combinations of derivatives occurring in the above equations do not have the
required symmetric structure. Given our present goal, the target is to choose a
suitable matter description and then shuffle the evolution equations for the full
set of variables into a FOSH form.

2.6 (1 + 1 + 2)–decomposition

It proves very helpful to consider a (1+1+2)–decomposition of all geometrically
defined field variables and their dynamical relations. In order to do so, we
arbitrarily pick the frame basis field e1 as a spacelike reference direction. In a
small isotropic neighbourhood U in the local rest 3-space of an arbitrary event
P, we establish the convention of regarding those spatial frame components of
geometrical objects which contain the index “1” as longitudinal with respect to
e1, while regarding those which exclude the index “1” as transverse with respect
to e1. Likewise, in U , e1 shall constitute the outward frame derivative while
e2 and e3 shall be tangential frame derivatives. For the frame components of
spatial rank-2 symmetric tracefree tensors aαβ = a〈αβ〉 with squared magnitude
a2 := 1

2 (aαβaαβ) ≥ 0, we define a new set of frame variables by

a+ := 1
2 (a22 + a33) = − 1

2 a11 a− := 1
2
√

3
(a22 − a33) a× := 1√

3
a23

a× := 1√
3

a23 a2 := 1√
3

a31 a3 := 1√
3

a12 ,
(40)

so that
a2 = 3 (a2

+ + a2
− + a2

× + a2
2 + a2

3) . (41)

In particular, we apply this to {σαβ , Eαβ , Hαβ }. In analogy to Eq. (40), we
perform a (1 + 1 + 2)–decomposition of the spatial commutation functions nαβ

by defining

n := n11 + n22 + n33 n+ := −n11 + 1
2 (n22 + n33) n− := 1

2
√

3
(n22 − n33)

n× := 1√
3

n23 n2 := 1√
3

n31 n3 := 1√
3

n12 .
(42)

The squared magnitude is then given by

1
2
(nαβnαβ) =

1
6

(n2 + 2n2
+) + 3 (n2

− + n2
× + n2

2 + n2
3) . (43)

Note that only (n − 2n+), n− and n× transform as tensor components under
rotations of the spatial frame { eα } about the reference e1-axis.
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2.7 Derivation of a FOSH evolution system

By applying the commutator (15) to f = p and using Eqs. (38), (39), (36) and
(17), we derive an evolution equation for the acceleration u̇α of the matter fluid
tangents u given by

e0(u̇α)− c2
s eβ(

1
3

Θ δαβ + σαβ + εαβγ ωγ)

= − [ c−2
s

d2p

dµ2
(µ + p)− c2

s +
1
3

] Θ u̇α − (u̇β + 3c2
saβ)σαβ − c2

s nα
β ωβ

+ εαβγ [ (2c2
s − 1) ωβ u̇γ + Ωβ u̇γ − c2

s aβ ωγ − c2
s nβδ σδ

γ ]

− c2
s (C1)α + Θ c−2

s

d2p

dµ2
(CPF )α . (44)

Next, contracting the commutator (15), again applied to f = p, with εαβγ and
using Eqs. (38), (36) and (39) leads to the identity

0 = εαβγ (eβ − aβ) (u̇γ)− nα
β u̇β − 2 c2

s Θωα

(45)
− (µ + p)−1 [ εαβγ (eβ − aβ) (CPF )γ − nα

β (CPF )β + (c−2
s + 1) εαβγ u̇β (CPF )γ ] .(46)

This identity constitutes the key step in achieving FOSH form for the evolution
subsystem (30) - (32) and (44) that links the kinematical fluid variables Θ, σαβ

and ωα to u̇α and establishes the sound cone structure on (M, g, u ). The trick
is to add, on using Eq. (46), εαβγ eβ(u̇γ) to the left-hand side of Eq. (32), i.e.,
to change its principle part to the new form e0(ωα) + 1

2 εαβγ eβ(u̇γ).
In order to obtain from the extended 1+3 orthonormal frame relations proper

partial differential equations such that the FOSH theory applies, we express the
coordinate components e0

µ := e0(xµ) and eα
µ := eα(xµ) of the 1+3 ONF basis

{ e0, eα } in terms of the comoving local coordinate basis { ∂t, ∂i } given by

e0 := M−1 ∂t , eα := eα
i (Mi ∂t + ∂i) ; (47)

Here M = M(t, xi) denotes the threading lapse function and Mi dxi = Mi(t, xj) dxi

the dimensionless threading shift 1-form, already introduced above in slightly
different form. The inverse of the threading metric is hij := δαβ eα

i eβ
j . The

commutator equations (15) and (15) yield

eα
i [ ∂tMi + M−1 (Mi ∂tM + ∂iM) ] = u̇α (48)

M−1 ∂teα
i = − [

1
3

Θ δα
β + σα

β + εα
β

γ (ωγ + Ωγ) ] eβ
i(49)

M e[α
i eβ]

j (Mi ∂tMj + ∂iMj) = εαβγ ωγ (50)

2 e[α
i [ Mi ∂teβ]

j + ∂ieβ]
j ] eγ

j = 2 a[α δγ
β] + εαβδ nδγ , (51)
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where eα
i is defined through the relation eα

i eα
j = δj

i. One way of picking
the threading lapse function M is provided by parameterising a central integral
curve of u, taken as a reference line, by physical proper time. Then we have

e0
µ = uµ = M−1

0 δµ
0 , (52)

where M0 denotes a constant threading lapse function of unit magnitude. If,
furthermore, the spatial frame { eα } is chosen to be Fermi-propagated along u,
i.e.,

Ωα = 0 , (53)

we obtain reduced evolution equations for Mi and eα
i;

∂tMi = u̇α eα
i = u̇i (54)

M−1
0 ∂teα

i = − [
1
3

Θ δα
β + σα

β + εα
β

γ ωγ ] eβ
i . (55)

Our preparations for the derivation of an evolution system in FOSH form
for barotropic perfect fluids from the general 1 + 3 ONF equations are now
complete. We will use the perfect fluid form of the set of equations (37), (38),
(52) - (54), (28) - (34) and (44) with (46), and (36). Of immediate interest for
the FOSH structure is only the principle part, the left-hand side in Eq. (1) that
describes the dynamical interactions between the various fields. In terms of the
frame derivatives ea we can represent it by The frame derivative principle part :

M̄AB a ea(uB) . (56)

Using tracefree-adapted irreducible frame variables as defined in Eq. (40) for
each of the fluid rate of shear and the electric and magnetic Weyl curvature, a
FOSH evolution system can now be obtained, taking certain linear combinations
of the equations where necessary, for the following set of 44 dependent dynamical
fields: The dependent geometrical field variables:

uA =




uframe

ucon

ukin,1

ukin,2

ukin,3

umat

uWeyl




,

uframe = [ eα
i, Mi ]T

ucon = [ aα, nαβ ]T

ukin,1 = [ u̇1,
1
3 (Θ− 2σ+), ( 1√

3
σ3 + ω3), ( 1√

3
σ2 − ω2) ]T

ukin,2 = [ u̇2,
1
3 (Θ + σ+ +

√
3σ−), ( 1√

3
σ1 + ω1), ( 1√

3
σ3 − ω3) ]T

ukin,3 = [ u̇3,
1
3 (Θ + σ+ −

√
3σ−), ( 1√

3
σ2 + ω2), ( 1√

3
σ1 − ω1) ]T

umat = [ µ ]
uWeyl = [ E+, E−, E1, E2, E3, H+, H−, H1, H2, H3 ]T

.

The symmetric (44 × 44)-matrices M̄AB a occurring in Eq. (56) are found to
assume the forms
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The matrices:

M̄AB 0 =




112 . . . . . .
. 19 . . . . .
. . K . . . .
. . . K . . .
. . . . K . .
. . . . . 1 .
. . . . . . 110




, (57)

M̄AB 1 =




012 . . . . . .
. 09 . . . . .
. . B1 . . . .
. . . B2 . . .
. . . . B3 . .
. . . . . 0 .
. . . . . . C1




, (58)

M̄AB 2 =




012 . . . . . .
. 09 . . . . .
. . B3 . . . .
. . . B1 . . .
. . . . B2 . ,
. . . . . 0 .
. . . . . . C2




, (59)

M̄AB 3 =




012 . . . . . .
. 09 . . . . .
. . B2 . . . .
. . . B3 . . .
. . . . B1 . .
. . . . . 0 .
. . . . . . C3




. (60)

K : =
(

1 .
. c2

s 13

)
, B1 := − c2

s




. 1 . .
1 . . .
. . . .
. . . .


 , (61)

B2 : = − c2
s




. . . 1

. . . .

. . . .
1 . . .


 ,B3 := − c2

s




. . 1 .

. . . .
1 . . .
. . . .


 . (62)
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C1 :=




. . . . . . . . . .

. . . . . . . 1 . .

. . . . . . − 1 . . .

. . . . . . . . . − 1/2

. . . . . . . . 1/2 .

. . . . . . . . . .

. . − 1 . . . . . . .

. 1 . . . . . . . .

. . . . 1/2 . . . . .

. . . − 1/2 . . . . . .




, (63)

C2 :=




. . . . . . . .
√

3/2 .
. . . . . . . . − 1/2 .
. . . . . . . . . 1/2
. . . . . −√3/2 1/2 . . .
. . . . . . . − 1/2 . .

. . . −√3/2 . . . . . .

. . . 1/2 . . . . . .

. . . . − 1/2 . . . . .√
3/2 − 1/2 . . . . . . . .
. . 1/2 . . . . . . .




, (64)

C3 :=




. . . . . . . . . −√3/2

. . . . . . . . . − 1/2

. . . . . . . . − 1/2 .

. . . . . . . 1/2 . .

. . . . .
√

3/2 1/2 . . .

. . . .
√

3/2 . . . . .
. . . . 1/2 . . . . .
. . . 1/2 . . . . . .
. . − 1/2 . . . . . . .

−√3/2 − 1/2 . . . . . . . .




. (65)

The components of all these matrices are just numerical constants since we
evaluated the priniple part of our FOSH evolution system in the orthonormal
basis { ea }. When the frame derivatives ea in Eq. (56) are substituted for in
terms of their coordinate components and the partial derivatives introduced in
Eqs. (47) and (52), the non-constant components of the symmetric matrices
MAB µ in Eq. (1) with respect to the local coordinate basis { ∂µ } can be easily
read off.

2.8 Characteristics, propagation velocities, and eigenfields

The set of characteristic 3-surfaces {φ =const} underlying a FOSH evolution
system can be interpreted as a collection of wavefronts with phase function φ
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across which certain physical quantities may be discontinuous. The associated
characteristic eigenfields propagate along bicharacteristic rays within these 3-
surfaces at velocities v, which represent their slopes relative to the direction
of u [3]. To determine the characteristic 3-surfaces, we can assume without
loss of generality that at a particular spacetime event the orthonormal frame is
oriented in such a way that the orthogonal gradient vector fields, ξa := ∇aφ,
are tangent to a 2-surfaces spanned by u and e1. This choice of frame, which
then only leaves the freedom of spatial rotations about the e1-direction, can be
made due to the local isotropy of the characteristic cones. Hence, locally the
frame axes and the given coordinate lines are made to coincide. In particular,
at a point we can take coordinate components of e1 where 0 = e1

2 = e1
3 and

also Mi = 0; however, generically their time derivatives will be non-zero. Thus,
we obtain

e0 = M−1
0 ∂t , e1 = e1

1 ∂1 . (66)

2.8.1 The characteristic condition

The characteristic condition the vector fields ξµ have to satisfy is

0 = det [ MAB µ ξµ ]. (67)

With the choice of frame outlined, their coordinate components are given by
ξµ = − v uµ + e1

µ , where the parameter v coincides with the different pos-
sible characteristic propagation velocities of the characteristic eigenfields and
e1

µ denotes the inverse coordinate components of e1. With Eq. (66) we find,
therefore, ξµ = v M0 δ0

µ + (e1
1)−1 δ1

µ, leading to

0 = det [ v M0 MAB 0 + (e1
1)−1 MAB 1 ]

= (M0)44 c6
s v30 (v − cs)3 (v + cs)3 (v − 1)2 (v + 1)2 (v − 1

2
)2 (v +

1
2
)2 .(68)

Clearly no root v of this equation is single-valued, implying a set of characteristic
3-surfaces each of which is degenerate.

2.8.2 Characteristic velocities and eigenfields

First, we find 30 characteristic eigenfields of our FOSH evolution system that
propagate with velocity v1 = 0 with respect to observers comoving with u; these
are

uA
(1) = [ eα

i, Mi, aα, nαβ ,
1
3
(Θ + σ+ ±

√
3σ−), (69)

(
1√
3
σ1 ± ω1), (

1√
3
σ2 − ω2), (

1√
3
σ3 + ω3), µ, E+, H+ ]T . (70)

Second, upon diagonalisation of the principle part in Eq. (1), the set of 6
characteristic eigenfields propagating with velocities v2,3 = ± cs along the sound
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cone is found to be

uA
(2) = [

1√
1 + c2

s

( csu̇1 ± 1
3
(Θ− 2σ+) ), (71)

1√
1 + c2

s

( csu̇2 ± (
1√
3
σ3 − ω3) ),

1√
1 + c2

s

( csu̇3 ± (
1√
3
σ2 + ω2) ) ]T .(72)

Here, and in the following, the upper sign applies to outgoing modes and the
lower one to incoming modes. By construction, the tracefree-adapted variables
of Eq. (40) clearly exhibit the purely longitudinal character of the first two
eigenfields and the semi-longitudinal of the latter four with respect to the (as-
sumed) spatial propagation direction e1.

Third, the set of 4 characteristic eigenfields propagating with velocities v4,5 =
± 1 along the null cone is

uA
(3) = [

1√
2

(E− ∓H1 ),
1√
2

(E1 ±H− ) ]T ; (73)

each pair corresponds to one of the two possible polarisation states of the freely
propagating gravitational field. Again, the tracefree-adapted variables of Eq.
(40) nicely reveal that these eigenfields are purely transverse to the (assumed)
spatial propagation direction e1.

Finally one obtains 4 characteristic eigenfields propagating with velocities
v6,7 = ± 1

2 along timelike 3-surfaces which are

uA
(4) = [

1√
2

(E3 ∓H2 ),
1√
2

(E2 ±H3 ) ]T . (74)

However these states are not allowed to occur because of the constraint equa-
tions: initial data cannopt be set that will lead to these modes being activated
[2].

The results of Eqs. (69) - (74) lead to a number of observations. The space-
time metric g, which embodies the local causal structure (and has coordinate
components constructed by gµν = ηab ea

µ eb
ν), propagates along the timelike

reference congruence itself, i.e., with v = 0. Parts of the spacetime connection
(which contains first derivatives of g) also propagate at v = 0, while the remain-
ing parts follow the sound cone. With the present geometrical set of dependent
field variables, it is only within the Weyl curvature (which is of second order in
the derivatives of g) that one finds modes that propagate changes in the state
of a gravitational field at the speed of light.

As to the magnitudes of the different propagation velocities it should be
noted that, by use of the Bianchi field equations (33) and (34), causal propaga-
tion of the gravitational field modes with |v| ∈ { 0, 1 } falls out automatically;
no further assumptions are required. To ensure causal propagation of pressure
perturbations in the matter fluid, on the other hand, we need to impose the
condition 0 ≤ cs < 1.

It can be easily inferred from the propagation equations along u for the Weyl
curvature divergence equations (23) and (24), that the characteristic velocities
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relative to u for the components (C4)2∓(C5)3 and (C4)3±(C5)2 are v = ± 1
2 too.

Hence it follows that the Weyl curvature divergence equations propagate relative
to u at precisely the speed that is required to ensure that jump discontinuities
in e1(E3∓H2) and e1(E2±H3) will always remain physically disallowed at any
instant throughout the dynamical evolution of a cosmological model (M, g, u ).
It should be emphasised at this stage that this property is completely indepen-
dent of the presence of matter. That is, of course the jump conditions apply
equally to vacuum spacetime configurations.

Jump discontinuities in the outward first frame derivatives of the transverse
Weyl curvature characteristic eigenfields (E− ∓H×) and (E× ±H−) are phys-
ically allowed. Clearly, this situation reflects the freedom of specifying four arbi-
trary (non-analytic) real-valued functions I∂3g := { a1(xi), a2(xi), a3(xi), a4(xi) }
of differentiability class C2(U) with respect to the zeroth-order derivative level
of g as the initial data for the dynamical degrees of freedom associated with the
gravitational field itself.

The key point of all this is that as well as the gravitational wave modes
that propagate at the speed of light, there are scalar and vector modes whose
characteristics are are timelike (see also [4] for a different approach leading to the
same result). Hence the true causal domains in the universe are not necessarily
bounded by the light cone; they may be much smaller, depending on the physical
conditions holding. We now look at this in the cosmological context.

3 The real physical universe: different epochs

Different epochs occur in the history of the universe, with different causal im-
plications. We consider here only the Hot Big Bang era and later times; similar
considerations will hold for any inflationary and earlier epochs that might oc-
cur before the Hot Big Bang era, but we do not consider them here. Thus the
epochs we consider are

Phase 1: the early universe: initially, relativistic
- spatially homogeneous to high accuracy, speed of sound is c/

√
3, with

relativistic diffusion,
Later, non-relativistic matter, radiation dominated
- spatially homogeneous to high accuracy, with non-relativistic diffusion and

speed of sound.
Phase 2: decoupling and structure formation.
- structure forms spontaneously because of gravitational attraction after

matter radiation decoupling; spatially homogeneous on large averaging scales
but with growing inhomogeneities on smaller scales.

Phase 3: late universe: isolated astronomical structures
- the universe is spatially homogeneous on average (very large scales) but

on scales relevant to local physics is very inhomogeneous; isolated clumps of
matter such as the Solar system and the Galaxy have separated out of the
global expansion and are separated from each other by vast regions of space.
Fractional density contrasts are very high (of order 1030).
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3.1 Domains of Influence

The true domain of dependence is different in each epoch. As discussed above,
timelike characteristics hold for all modes except gravitational radiation, corre-
sponding to the distinction between scalar, vector, and tensor modes in studies
of cosmological perturbations. Tensor modes are determined by distant matter,
their characteristic velocity is the speed of light, but for pressure-free matter
the characteristic velocities of the scalar and vector modes are zero, so they are
only directly affected by very close matter.

Phase 1: Effective characteristics are those of sound waves; due to the high
degree of homogeneity, gravitational waves are negligible.

In the first part, when relativistic matter dominates, the real domain of
dependence is a significant part of past light cone: it is bounded by 1/

√
3 = 0.58

of the light cone, corresponding to perturbations by relativistic sound waves;
but even here we do not expect major information propagation at that speed.
In the second part, when non-relativistic matter dominates, the real domain of
dependence is a few percent of the past light cone because the speed of sound
is non-relativistic.

Phase 2: Characteristics are timelike curves and. the real domain of de-
pendence is very local.

Only pressure-free scalar and vector modes are significant in linear phase
of growth. There will be large scale matter flows but at sub-relativistic veloci-
ties. The domain of dependence for each inhomogeneity will be the ‘catchment
volume’ from which it succeeds in accreting material. Again the real domain
of dependence is a few percent of the past light cone because these speeds are
non-relativistic.

Phase 3: Just a small world tube around our world line is significant (out
to Sun)

hence the real domains of dependence in cosmology are much smaller than
implied by the light cone, and this can

¿From this, one can draw causal diagrams showing the different epochs and
their true domains of causality: the real physical domain of dependence. They
are quite different than the standard causal horizons determined by the past light
cone, because scalar modes dominate all these epochs and to a lesser extent
vector modes, with tensor modes being negligible in all cases. Of course the
past light cone is crucial to astronomical and cosmological observations, but the
relevant photons from distant domains have very little physical effect on earth;
indeed we have to develop exstremely sensitive detectors in order to record
them. For them the light cone and its associated limits (the visual horizon) are
relevant.

4 Physical effects in the real universe

Finally we ask if there are ever times in the history of the universe when
gravitational wave effects are significant, as opposed to time-dependent tidal
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forces.From the phase plane analysis of the eraly universe (G0 models) reported
by John Wainwright, we arrive at a series of tentative conclusions [8]:

• Strong gravity will occur in the early universe, associated with local re-
strictions on causality.

• Gravitational waves are not important in the cosmological context, but
tidal forces are and indeed are often more important than the gravitational
fields caused directly by the matter.

• The relation between tidal forces and vorticity is unclear and may contain
some of the most interesting physics.

The relation between them is that - if our conjectures are correct - in the
early universe, energy and information mainly propagate along timelike world
lines rather than on null rays. When matter moves relative to the irrotational
reference congruence, as must be the case when vorticity is important, then the
energy and information will flow with the matter. The primary effect of the
gravitational field is in determining the motion of matter through Coulomb-like
effects; on the other hand, the effect of the matter on the gravitational field
is primarily through concentrating that field into small regions, while conserv-
ing the constraints which embody the Gauss law underlying the Coulomb-like
behaviour. The effect of spatial curvature is to generate oscillatory behaviour
in tidal forces as this concentration takes place, as seems to be characteristic
of generic cosmological singularities; but this is not wavelike in the sense of
conveying information to different regions, it is just a localised oscillation.

If this is correct, we have a major issue to consider: are there any epochs
in the evolution of realistic universe models where tensor (gravitational wave)
modes are important? This will be distinguished from the Bianchi Type IX
oscillations which are ‘silent universes’ characterised by ODE’s. Could there be
good universe models where such genuinely GR dynamical effects are important?
One issue here is what characterises a gravitational waves; I suggest that the
criterion is that both curlE 6= 0 and curlH 6= 0 so that in the Maxwell-like equa-
tions for the Weyl tensor, we non-trivial coupling leading to a (second-order)
wave equation on taking the tiome derivative of either propagation equation. It
is issues such as these that need investigation in further development of themes
studied here.

4.1 Local dynamics versus non-local

At the present time gravitational wave effects are insignificant: and that is why
a local Newtonian approximation, and indeed the existence of isolated systems,
is possible. However this holds only once one has factored out the background
geometry and dynamics, which are of course determined via teh field equations
and boundary conditions. It is precisely that full effect (incorporating integrals
over all matter) that is the concern of cosmology, not just the perturbation
effects around the background geometry. The local evolution allowed in the
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solar system is possible because we are situated in an almost FLRW background
unievrse; there are other models for which this is not true at all times, e.g. those
that are like a Bianchi I model at early times (and that will be like a Bianchi
VII model at late times). In them GR effects (based in the effect sof spatial
anisoropy, and perhaps gravitational waves in some cases) were important at
early tmes and may be important at late times but are not so now.

We may paraphrase; the universe does not interfere with local physics but
does influence it. It allows isolated systems to exist. The issue is, how large is
the set of space-times in which this may be true ? How large is the set where
anisotropic GR effects are never important?

5 Appendix: The arrow of time

A particularly important kind of top-down action from the cosmos to complex
systems is the causal link that governs the choice of the local arrow of time every
where in the universe, as discussed in the previous section. It seems likely, for
example, that the cosmos puts boundary conditions on solutions to Maxwell’s
equations that determine the local electro-magnetic arrow of time at the micro-
physical level , which in turn determines this arrow at the macro level. How
this all happens is a crucial question.

I will here briefly relate the epochs discussed above to the issue of the arrow
of time and how that problem looks different at each of these epochs.

5.0.1 Relations

In Phase 1: the expansion of the universe provides a direction of time for
quasi-equilibrium physics,

- the falling temperature gives a unique direction to it all, controls statistical
processes linking matter and radiation

- these are mainly reversible because mainly dominated by equilibrium pro-
cesses, so no arrow of time entailed

- the non-equilibrium epochs give the real arrow of time, because their rem-
nants would not be there otherwise

e.g. neutrons leading to helium 4, the underlying non-equilibrium process
is the decay of free neutrons [binary collisions can’t keep equilibrium because
electrons/positrons are gone; the reverse of neutron decay is a 3-body interaction
that will be improbable.Thus the one-body decay to 3 remnants is time preferred
over the reverse three body collision]

Thus in this epoch, the expansion marks out the arrow of time uniquely
Would the arrow of time be opposite if the universe contracted? - for equi-

librium processes, yes: not for non-equilibrium. Constituents would be different
and in a collapse phase there would be different matter constituents at each
temperature,

In Phase 2, the universe starts off with smooth initial conditions and ends
up clumpy through structure formation due to gravitional attraction..
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The time reverse is possible but does not happen because of smooth initial
conditions.. These improbable initial conditions are supposed to be explained
by inflation, but that is disputed: Indeed R Penrose claims the opposite is true:
inflation cannot explain the smooth initial conditions needed to give the macro
arrow of time because of (i) quantum foam and (ii) black holes.

Either the entropy law does not apply to gravitational structure formation,
or the consequences are the opposite of what is usually stated.

Maybe it applies but with such different conditions (dynamics: long range
gravitational attraction with no negative masses; initial conditions: very smooth
) that the outcome is the opposite of what is usually stated. which is the case.? If
so then the increase of entropy is not a fundamental law but is a consnequence
of special initial conditions NB: We have no good definition of gravitational
entropy in terms of coarse graining or phase space volumes. A major mssing
item in classical GR.

In Phase 3, the arrow of time in a local isolated system comes either
- from influences crossing a spatial separating boundary, expressed in associ-

ated boundary conditions (e.g. an ‘outgoing radiation condition’, which is really
a no-incoming radiation condition), or

- through initial conditions at the start in the local region, perhaps compared
with those at the end (R Penrose), setting up an arrow of time initially, then
preserved by conservation laws

- or through extra selection condition, imposed afresh at each time indepen-
dent of earlier times (O Penrose and I Percival).

This is quite different than in the other two cases. The expansion of the
universe would seem to have no appreciable impact. Itis possibel that the source
of the arrow is the electromagnetic arrow based in differences in the far distant
future and past; but how does that influence local mechanical and chemical
events? And how does that distant influence get conveyed to a local system
across a bounding sphere surrounding the system?

5.0.2 Issues:

** how does each mechanism by itself relate to the arrow(s) of time?
** how do the different mechanisms relate to each other (giving the same

time direction)?
** how would they behave if there were conditions leading to a reversal of

the arrow of time?
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