PHD QUALIFYING EXAM IN TOPOLOGY

- **1.** Let X, Y and Z be topological spaces and $f: X \to Y$ and $g: Y \to Z$ continuous maps.
 - (a) Define the group $C_n(X)$ of singular n-chains in X
 - (b) Define the homomorphism $f_{\#}: C_n(X) \to C_n(Y)$
 - (c) Show that $(g \circ f)_{\#} = g_{\#} \circ f_{\#}$
 - (d) Define the group $C^n(X)$ of singular n-cochains in X
 - (e) Define the homomorphism $f^{\#}: C^n(Y) \to C^n(X)$
- **2.** The CW-complex X is obtained from two copies of the Möbius band by identifying their (oriented) boundary circles via a map f of degree n.
 - (a) Calculate the fundamental group $\pi_1(X, x)$;
 - (b) Calculate the homology groups $H_*(X; \mathbb{Z})$.
- **3.** Show that any closed *n*-manifold X such that $H_*(X; \mathbb{Z}/2) = H_*(S^n; \mathbb{Z}/2)$ is orientable.
- **4.** Is the one-point union $S^2 \vee S^4$ homotopy equivalent to a closed manifold? Explain why or why not.
- **5.** Consider the double covering $p: S^2 \to \mathbb{R}P^2$.
 - (a) Prove that, for any abelian group A, the induced homomorphisms $p^*: \tilde{H}^*(\mathbb{R}P^2;A) \to \tilde{H}^*(S^2;A)$ are all zero.
 - (b) Prove that the map p is not homotopic to a constant map.
- **6.** For any $n \geq 1$, calculate the set $[\mathbb{C}P^n, \mathbb{C}P^n]$ of the homotopy classes of continuous maps from $\mathbb{C}P^n$ to itself.