MS TOPOLOGY QUALIFYING EXAM

JUNE 2010

- 1. Let X and Y be metric spaces, and $f,g:X\to Y$ continuous maps. Suppose that f=g on a subset $A\subset X$ which is dense in X. Prove that then f=g on the entire X.
- **2.** Recall that a subspace A of a topological space X is called a *retract* of X if there is a continuous map $r: X \to A$ such that $r \circ i = 1$, where $i: A \to X$ is the inclusion map. Prove that $\{0,1\}$ is not a retract of [0,1].
- **3.** Let X be a Hausdorff topological space, and A, $B \subset X$ its compact subspaces. Prove that $A \cap B$ is compact.
- **4.** Let (X,d) be a metric space. Recall that a map $f:X\to X$ is called a contraction of X if there is a number c<1 such that

$$d(f(x), f(y)) \leq c d(x, y)$$

for all $x, y \in X$. Prove that if f is a contraction of a complete metric space X then there is a unique point $x \in X$ such that f(x) = x.

- **5.** Let $f: X \to Y$ be a smooth map of compact manifolds of the same dimension, and $q \in Y$ a regular value of f. Prove that $f^{-1}(q)$ is finite.
- **6.** Prove that all contractible manifolds are simply connected. Give an example which shows that the converse is not true.
- 7. Let S^n be the unit sphere in \mathbb{R}^{n+1} given by |x|=1. Compute the degree of the antipodal map $f:S^n\to S^n$ defined as f(x)=-x.
- 8. Use Stokes' Theorem to evaluate the integral

$$\oint_C 3x^2y \, dx + x^3 \, dy + 3xy \, dz,$$

where C is the curve of intersection of the saddle $z=x^2-y^2$ with the cylinder $x^2+y^2=1$ oriented clockwise as viewed from the top of the z-axis.